mtg Documentation

Release 2.1.2

Christophe Pradal

Contents

1 Install 3
2 Use 5
3 MTG User Guide 7
3.1 Quick Start to manipulate MTGs 7
3.2 The openalea.mtg.aml module: Long Tour 10
3.3 MTG file 18
3.4 Illustration: exploring an apple tree orchard 74
3.5 Tutorial: Create MTG file from scratch 100
3.6 PlantFrame (3D reconstruction of plant architecture) 119
3.7 Using MTG within VisuAlea 139
3.8 File syntax 141
3.9 Lsystem and MTGs 235
3.10 Bibliography 247
3.11 Classes and Interfaces 247
3.12 Algorithms 248
4 Reference 249
4.1 MTG - Multi-scale Tree Graph 249
4.2 High level reporting function compatible with AML 281
4.3 Reading and writing MTG 304
4.4 Traversal methods on tree and MTG 307
4.5 Common algorithms 311
4.6 Graphical representation of MTG 313
4.7 utilities (plots) 313
5 Credits 315
5.1 Lead Developer 315
5.2 Contributors 315
6 Indices and tables 317
Python Module Index 319
Index 321

Contents:
\qquad
Install

Use conda to install openalea.mtg:
conda install openalea.mtg -c openalea

CHAPTER 2

Use

Simple usage:
from openalea.mtg import *

chapter 3

MTG User Guide

Summary

Version 2.1.2
Release 2.1.2
Date Apr 20, 2022
Provides MTG or Multiscale Tree Graph data structure.

In order to quickly learn how to read a MTG file and plot it with PlantGL, jump to the the Quick Start to manipulate MTGs. If you are in a hurry and want to parse the MTG to retrieve information about it, look at the The openalea.mtg.aml module: Long Tour that fully describes the openalea.mtg. aml module.

Then, we advice you to look at the section MTG file to understand what is a MTG file through a detailled description of the format and a few examples (note that the section File syntax gives a full description of the format). The section Illustration: exploring an apple tree orchard explains through a full example what can be done with the MTG data in point of view of statistical analysis.

Finally, once the MTG format is understood, you may want to create your own MTG file from scratch as described in Section Tutorial: Create MTG file from scratch.

Note: The full guide reference is also available Reference.

3.1 Quick Start to manipulate MTGs

3.1.1 Reading an MTG file and activate it

A plant architecture described in a coding file can be loaded in openalea.mtg.aml as follows:

```
>>> from openalea.mtg.aml import MTG
>>> g1 = MTG('user/agraf.mtg') # some errors may occur while loading the MTG
ERROR: Missing component for vertex 2532
```

Note: In order to reproduce the example, download agraf MTG file and the agraf DRF file. Other files that may be required are also available in the same directory (*smb files) but are not compulsary.

The MTG function attempts to read a valid MTG description and parses the coding file. If errors are detected during the parsing, they are displayed on the screen and the parsing fails. In this case, no MTG is built and the user should make corrections to the coding file. If the parsing succeeds, this function creates an internal representation of the plant (or a set of plants) encoded as a MTG. In this example, the MTG object is stored in variable $g l$ for further use. Note that a MTG should always be stored in a variable otherwise it is destroyed immediately after its building. The last built MTG is considered as the "active" MTG. It is used as an implicit argument by all the functions of the MTG module.

It is possible to change the active MTG using Activate ()

```
g1 = MTG("filename1") # gI is the current MTG
g2 = MTG("filename2") # g2 becomes the current MTG
Activate(g1) # gl is now again the current MTG
```

Warning: the notion of activation is very important. Each call to a function in the package MTG will look at the active MTG.

3.1.2 Plotting

Warning: PlantFrame is still in development and not all MTG files can be plotted with the current code, especially the files that have no information about positions

The following examples shows how to plot the contents of a MTG given that a dressing data file (DRF) is available. See the File syntax section for more information about the MTG and DRF syntax. Note that the following code should be simplified in the future.

```
from openalea.mtg.aml import MTG
from openalea.mtg.dresser import dressing_data_from_file
from openalea.mtg.plantframe import PlantFrame, compute_axes, build_scene
g = MTG('agraf.mtg')
dressing_data = dressing_data_from_file('agraf.drf')
topdia = lambda x: g.property('TopDia').get(x)
pf = PlantFrame(g, TopDiameter=topdia, DressingData = dressing_data)
axes = compute_axes(g, 3, pf.points, pf.origin)
diameters = pf.algo_diameter()
scene = build_scene(pf.g, pf.origin, axes, pf.points, diameters, 10000)
from vplants.plantgl.all import Viewer
Viewer.display(scene)
```


3.1.3 Functions related to MTGs

There exists a comprehensive set of functions related to MTGs. These functions may be directly used on the active MTG or they may be combined with each other in order to define new functions on MTGs. Here are some of them.

Fig. 1: Figure 3.5 An apple tree plotted with the python script shown above

Full details may be found elsewhere either in the tutorials (e.g., The openalea.mtg.aml module: Long Tour) or in the Reference section.

- MTG constructor. We've already seen how to read a MTG file by using MTG(), which takes one mandatory argument, namely the MTG's filename.
- Extraction of vertex sets: e.g. VtxList(). Different types of lists of vertices can be extracted from a MTG through the function VtxList (). Notably, the set of functions at a given scale is obtained with the optional argument Scale:

```
from openalea.mtg.aml import VtxList
VtxList()
vtx1 = VtxList(Scale=1) # vtx 1 returns a list e.g., [1]
vtx2 = VtxList(Scale=2)
vtx3 = VtxList(Scale=3)
```

On line 2, we extract the vertices that have scale set to 1 . The returned list contains only 1 element that have the index 1. Conversely, we could use the Scale () function to figure out what is the Scale of the vertex that have the index 1:

```
>>> from openalea.mtg.aml import Scale
>>> Scale(1)
1
```

- Functions returning vertex attributes: e.g. Class(vtx), Index(vtx), Feature(vtx, feature_name). The different attributes attached to a given vertex can be retrieved by these functions. The class and the index of a vertex are respectively returned by functions Class () and Index (). The value of any other attribute may be obtained by specifying its name:

```
>>> from openalea.mtg.aml import Feature, Class, Index
>>> vtxList = VtxList(Scale=2) # get a list of vertices according to a scale
>>> v1 = vtxList[0] # look at the first vertex
>>> # Feature(vertex_id, name)
```

```
>>> Feature(v1, "XX")
0.0
>>> Class(v1)
'U'
>>> Index(v1)
94
```

Returns the attribute "XX" (if any) of a vertex v1. These functions return scalar (INTEGER, STRING, REAL), i.e. elementary types different from VTX.

- Functions for moving in MTGs: e.g. Father(vtx), Complex(vtx), Successor(vtx), Predecessor(vtx). Some functions take a VTX as an argument and return a VTX. These functions allow topological moves in the MTG, i.e. they allow to select new vertices with topological reference to given vertices. See Father(), Predecessor(), Successor(), and Complex()

```
>>> from openalea.mtg.aml import Father, Successor, Predecessor
>>> Father(v1)
>>> Predecessor(v1)
```

Note: The predecessor is a special case of Father; predecessor function is equivalent to Father(v, EdgeType-> ' $<$ '). It thus returns the father (at the same scale) of the argument

- Functions for creating collections of vertices: e.g. Sons(vtx), Components(vtx), Axix(vtx). These functions return sets of vertices associated with a certain vertex. Components() returns all the vertices that compose at the scale immediately superior a given vertex. Axis() returns the ordered set of vertices which compose the axis which the argument belongs to.
- Functions for creating graphical representations of MTGs: PlantFrame(), Plot(), DressingData PlantFrame() enables the user to compute 3D-geometrical representations of MTGs.
The above functions can be combined together using the Python language to extract from plant databases various types of information.

documentation status:

Documentation adapted from the AMAPmod user manual version 1.8 Dec 2009.
Documentation to be revised

3.2 The openalea.mtg.aml module: Long Tour

3.2.1 Reading the file

This page illustrates the usage of all the functionalities available in openalea.mtg.aml module. All the examples uses the MTG file code_file2.mtg. If you are interested in the syntax, we stronly recommend you to look at Section MTG file.

First, let us read the MTG file with the function MTG () . Note that only one MTG object can be manipulated at a time. This MTG object is the active MTG.

Fig. 2: Figure 1: Graphical representation of the MTG file code_file2.mtg used as an input file to all examples contained in this page

```
>>> from openalea.mtg.aml import *
>>> g = MTG('user/code_file2.mtg')
>>> Active() == g
True
```

The Active () function checks that g is currently the active MTG.
If a new MTG file is read, it becomes the new active MTG object. However, the function Activate () can be use to switch between MTG objects as follows:

```
>>> h = MTG('user/agraf.mtg')
>>> Active() == h
True
>>> Activate(g)
```

```
>>> MTGRoot()
0
```


3.2.2 Feature functions

Order, Rank and Height

Order () (AlgOrder ()) look at the number of + sign that need to be crossed before reaching the vertex considered

```
>>> Order(3)
0
>>> Order(14)
1
>>> AlgOrder(3,14)
1
```

Height() (AlgHeight()) look at the number of components between the root of the vertex's branch and the vertex's position.

```
>>> Height(3)
0
>>> Height(14)
10
>>> AlgHeight(3, 14)
10
```

Rank () (AlgRank ()) returns the number < sign that need to be crosssed before reaching the vertex considered.

```
>>> Rank(3)
0
>>> Rank(14)
4
>>> AlgRank(3, 14)
5
```

Class (), Index (), Label (), Feature ()

Class () gives the type of vertex usually defined by a letter

```
>>> Class(3)
' I'
```

and Index () gives the other part of the label

```
>>> Index(3)
1
```

When speaking about multiscale tree graph, we also want to access the Scale ():

```
>>> Scale(3)
3
```

A new function called Label () combines the Class and Index:

```
>>> Label(3)
'I1'
```

Finally, Feature () returns value of a given feature coded in the MTG file.

```
>>> Feature(2, "Len")
10.0
```

ClassScale(), EdgeType (), Defined ()

ClassScale () returns the Scale at which appears a given class of vertex:

```
>>> ClassScale('U')
```

3

EdgeType () returns the type of connection between two vertices (e.g., +, <)

```
>>> i=8; Class(i), Index(i)
('I', 6)
>>> i=9; Class(i), Index(i)
('U', 1)
>>> EdgeType (8,9)
'+'
```

Defined () tests whether a vertex's id is present in the active MTG

```
>>> Defined(1)
True
>>> Defined(100000)
False
```


3.2.3 Date functions

The following function requires MTG files to contain Date information.

Todo: not yet implemented

Function	
DateSample(e1)	
FirstDefinedFeature(e1, e2)	
LastDefinedFeature(e1, e2)	
NextDate(e1)	
PreviousDate(e1)	

3.2.4 Functions for moving in MTGs

Trunk ()

Trunk () returns the list of vertices constituting the bearing botanical axis of a branching system

```
>>> Trunk(2) # vertex 2 is Ul therefore the Trunk should return index related to,
\hookrightarrowU1, U2, U3
[2, 24, 31]
>>> Class(24), Index(24)
('U', 2)
>> Trunk(3) # vertex 3 is an internode, so we get all internode of the axisu
\hookrightarrowcontaining vertex 3
[3, 4, 5, 6, 7, 8, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35]
>>> Class(35), Index(35)
('I', 19)
```

Father ()

Topological father of a given vertex.

```
>>> Label (8)
'I6'
>>> Father(8)
7
>>> Label(9) # Let us look at vertex 9 (with the Ul label)
'U1'
>>> Father(9) # and look for its father's index
2
>>> Label(2) # and its father's label that appear to also be equal to I
'U1'
```


Axis()

Axis () returns the vertices of the axis to which belongs a given vertex.

```
>>> [Label(x) for }x\mathrm{ in Axis(9)]
['U1', 'U2']
```

The scale may be specified

```
>>> [Label(x) for x in Axis(9, Scale=3)]
['I20', 'I21', 'I22', 'I23', 'I24', 'I25', 'I26', 'I27', 'I28', 'I29']
```


Ancestors()

Ancestors () returns a list of ancestors of a given vertex

```
>>> Ancestors(20) # of I29
[20, 19, 18, 17, 16, 14, 13, 12, 11, 10, 8, 7, 6, 5, 4, 3]
>>> [Class(x)+str(Index(x)) for x in Ancestors(20)]
['I29', 'I28', 'I27', 'I26', 'I25', 'I24', 'I23', 'I22', 'I21', 'I20', 'I6', 'I5', 'I4
\hookrightarrow', 'I3', 'I2', 'I1']
```

```
Path()
```

The Path () returns a list of vertices defining the path between two vertices

```
>>> [Class(x)+str(Index(x)) for x in Path(8, 20)]
['I20', 'I21', 'I22', 'I23', 'I24', 'I25', 'I26', 'I27', 'I28', 'I29']
```


Sons ()

In order to illustrate the Sons () function, let us consider the vertex 8

```
>>> Class(8), Index(8)
('I', 6)
>>> [Class(x)+str(Index(x)) for x in Sons(8)]
['I20', 'I7']
```


Descendants () and Ancestors ()

Descendants () an array with all the vertices, at the same scale as v , that belong to the branching system starting at v :

```
>>> [Class(x)+str(Index(x)) for x in Descendants(8)]
```

Ancestors () contains the vertices on the path from v back to the root (in this order) and finishes by the tree root.:

```
>>> [Class(x)+str(Index(x)) for x in Ancestors(8)]
```

Predecessor() and Successor ()
Predecessor () returns the Father of a vertex connected to it by a ' $<$ ' edge, and is therefore equivalent to:
Father (v, EdgeType-> '<').

Similarly, Successor () is equivalent to

```
Sons(v, EdgeType='<') [0]
```


Root ()

Root () returns root of the branching systenme containing a given vertex and therefore is equivalent to:

```
Ancestors(v, EdgeType='<') [-1]
>>> [Class(x) +str(Index(x)) for x in Ancestors(8)]
['I6', 'I5', 'I4', 'I3', 'I2', 'I1']
>>> Root(8)
3
>>> Class(3)+str(Index(3))
'I1'
```

Todo: Complex returns Scale(v)-1 why what is it for?

```
>>> Complex(8)
2
```


Components ()

Returns a list of vertices that are included in the upper scale of the vertex's id considered. The array is empty if the vertex has no components.

```
>>> Components(1, Scale=2)
[2, 9, 15, 24, 31]
>>> Components(1, Scale=3)
[3, 4, 5, 6, 7, 8, 21, 22, 23, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 25, 26, 27, 28,
\hookrightarrow 29, 30, 32, 33, 34, 35]
```


ComponentRoots()

Todo: to be done. find example

Location()

Vertex defining the father of a vertex with maximum scale.

```
>>> Label(9) # starting from a Component Ul at vertex's id 9
'U1'
>>> Father(9) # what is its Father ?
2
>>> Label(Father(9)) # answer: another U1 of vertex's id 2
'U1'
>>> Location(9) # what is the location of vertex 9
8
>>> Label(Location(9)) # the internode I6
'I6'
```

```
Extremities()
```

```
>>> Label (8)
'I6'
>>> Label(Extremities(8))
['I29', 'I19']
```


3.2.5 Geometric interpretation

Most of the following functions are not yet implemented. See Quick Start to manipulate MTGs to see the usage of PlantFrame () with dressing data.
You may also use the former AML code using openalea.aml package

```
PlantFrame() and Plot()
```

One can use openalea.aml for now:

```
>>> import openalea.aml as aml
>>> aml.MTG('code_file2.txt')
>>> pf = aml.PlantFrame(2)
>>> aml.Plot()
```

Shows the MTG file at scale 2. This is possible because Diameter and Lenmgth features are provided at that scale.

DressingData()	
Plot ()	
TopCoord ()	
RelTopCoord(e1, e2)	
BottomCoord(e1, e2)	
RelBottomCoord(e1, e2)	
Coord(e1, e2)	
BottomDiameter(e1,e2)	
TopDiameter(e1,e2)	
Alpha(e1,e2)	
Beta(e1,e2)	
Length(e1,e2)	
VirtualPattern(e1)	
PDir(e1,e2)	
SDir(e1,e2)	

3.2.6 Comparison Functions

Todo: not yet implemented

TreeMatching(e1) MatchingExtract(e1)

documentation status:

Documentation adapted from the AMAPmod user manual version 1.8 Dec 2009.
Documentation to be revised

Contents

- MTG file
- MTG: a Plant Architecture Databases
* Overview
* Explanations
- Coding Individuals
- Exploration: a simple example
* Reading the MTG file
* 3D representation
- Example 1
- Example 2
* Extraction of plant entity features
* Extracting more information from plant databases
- Types of extracted data
- Statistical exploration and model building using other Openalea/VPlants packages
- Bibliography

3.3 MTG file

openalea.mtg provides a Multiscale Tree Graph data structure (MTG) that is compatible with the standard MTG format that was defined in the AMAPmod software. For compatibility reasons, the same interfaces have been implemented in this package. However, this is a completly new implementation written in Python that will evolve by adding new functionalities and algorthims.

3.3.1 MTG: a Plant Architecture Databases

Overview

In OpenAlea/VPlants projects, plants are formally represented by multiscale tree graphs (MTGs) ${ }^{20}$. A MTG consists of a set of layered tree graphs, representing plant topology at different scales (internodes, growth units, axes, etc.).

To build up MTGs from plants, plants are first broken down into plant components, organised in different scales (Figure3.2.a and Figure3.2.b). Components are given labels that specify their types (Figure3.2.b, $U=$ growth unit, $F=$ flowering site, $S=$ short shoot, $I=$ internode). These labels

[^0]are then used to encode the plant architecture into a textual form. The resulting coding file (Figure3.2.c) can then be analysed by openalea.mtg tools to build the corresponding MTG (Figure3.2.d).

Fig. 3: Figure 3.2,a Starting from real plants, measurements are made.
Fig.
4:
Figure
3.2.b

Plants
com-
po-
nents
are
iden-
ti-
fied
and
la-
belled
(e.g,

U
for
growth
unit)

	T12+4911/T1		
	$\cdots \mathrm{L}$		
		TIS+AS2/F1	
		/I10- 0 - 1	
		NII 1 $1+492 \pi / 1$	
	Nas 2 F 1		
		MII - LT	
	I13+491/41		
		A110-AS2/F1.	
		AIIS+AS2/F1	
			$M 11-T T^{2}$
	$x \rightarrow T T 2$		
		$116+4.52 / 51$	
		$\cdots 17+352 \leq 1$	
		ISS+A.S2/F1	
		MS+AS2/1	
		人11+LJ2	
$\leq \mathrm{L}$			
$\cdots 4.921$			
	II $1+\pi / 2$		
	$12+\pi T 2$		

Fig. 5: Figure 3.2.c The plant components and their attributes are encoded in a MTG file

Explanations

sented by a tree graph, where each component is represented by a vertex in the graph and edges represent the physical connections between them. At any given scale, the plant components are linked by two types of relation, corresponding to the two basic mechanisms of plant growth, namely the apical growth and the branching processes. Apical growth is responsible for the creation of axes, by producing new components (corresponding to new portions of stem and leaves) on top of previous components. The connection between two components resulting from the apical growth
is a precedes relation and is denoted by a < character.
buds can then create axillary axes with their own apical growth). The connection between two components resulting from the branching process is a bears relation and is denoted by a + character. A MTG integrates - within a unique model - the different tree graph representations that correspond to the different scales at which the plant is described.

	Various types of
at-	
tribute	
can	

Attributes may be geometrical (e.g., diameter of a stem, surface area of a leaf or 3D positioning of a plant component)
or morphological (e.g., number of flowers, nature of the associated leaf, type of axillary production - latent bud, short shoot or long shoot -).

MTGs
can
be
con-
structed
from
field
ob-
ser-
va-
tions
us-
ing
tex-
tual
en-
cod-
ing
of
the
plant
ar-
chi-
tec-
ture as described in ${ }^{22}$ (see Figure3.2.a). Alternatively, code files representing plant architectures can also be constructed from simulation programs that generate artificial plants, or directly from any Python program, as we will illustrate it in the Tutorial: Create MTG file from scratch.

Todo: fix the internal link reference
The
code
files
usu-
ally
have
a
spread-
sheet
for-
mat
and
and
con-
tain
the

[^1]first few columns and the description of attributes attached to plant components on subsequent columns.

3.3.2 Codir
 In-
 di-
 vid-
 uals

Different
strate-
gies
have
been
pro-
posed
for
record-
ing
topo-
log-
i-
cal
struc-
tures
of
real
plants,
e.g. ${ }^{43},{ }^{32}$
for
plant
rep-
re-
sented at a single scale and $^{21},{ }^{25}$, for multiscale representations. In OpenAlea/Vplants, plant topological structures are abstracted as multiscale tree graphs. Describing a plant topology thus consists of describing the multiscale tree graph corresponding to this plant. The description of a given plant can be specified using a coding language. This language consists of a naming strategy for the vertices and the edges of multiscale graphs. A graph description consists of enumerating the vertices consecutively using their names. The name of a vertex is constructed in such a way that

[^2]it clearly defines the topological location of a given vertex in the overall multiscale graph. The vertices and their features are described using this formal language in a so called code file. Let us illustrate the general principle of this coding language by the topological structure of the plant depicted in Figure3.3.

Fig. 7: Figure 3.3 Coding the topological structure of a two year old poplar tree

Each
ver-
tex
is
as-
so-
ci-
ated
with
integer, called its index. The class of a vertex often refers to the nature of the corresponding botanical entity, e.g. I for internode, U for growth unit, B for branching system, etc. The index of a vertex is an integer which enables the user to locally identify a vertex among its immediate neighbors. Apart from this purely structural role, indexes may be used to convey additional meaning: they can be used for instance to encode the year of growth of an entity, its rank in an axis, etc.
senting each vertex and its relationship to its father are either written down or keyed directly into a laptop computer.

Fig. 8: Figure 3.4
symbol 1.

Cod-
ing a sin-
gle axis
(e.g.
the
series of
in-tern-
odes of the trunk depicted in Figure3.4 a) would then yield the string:

$\rightarrow I 1$
$\rightarrow<$ I2
$\rightarrow<$ I3
$\rightarrow<$ I4
$\rightarrow<$ I5
$\rightarrow<$ I6
$\rightarrow<$ I7
$\rightarrow<$ I8
$\hookrightarrow<$ I9
$\rightarrow<$ I10
$\rightarrow<$ I11
$\rightarrow<$ I12
$\rightarrow<$ I13
$\rightarrow<$ I14
$\rightarrow<$ I15
$\rightarrow<$ I1 6
$\rightarrow<$ I17 7
$\rightarrow<$ I18
$\rightarrow<$ I19
For
a
branch-
ing
struc-
ture
(
Fig-
ure3.4
a),
en-
cod-
ing
a
tree-
like
struc-

Abstract

of symbols leads us to introduce a special notation, frequently used in computer science to encode tree-like structures as strings (e.g. ${ }^{39}$). A square bracket is opened each time a bifurcation point is encountered during the visit (i.e. for vertices having more than one son). A square bracket is closed each time a terminal vertex has just been visited (i.e. a vertex with no son) and before backtracking to the last bifurcation point. In the above example, entity I6 is a bifurcation point since the description process can either continue by visiting entity $I 7$ or $I 20$. In this case, the bifurcation point $I 6$ is first stored in a bifurcation point stack (which is initially empty). Secondly, an opened square bracket is inserted in the output string and thirdly, the visiting process resumes at one of the two possible continuations, for example I20, leading to the following code :

ture

$$
\leftrightarrow I 1
$$

$$
\rightarrow<\text { I2 }
$$

$$
\hookrightarrow<I 3
$$

$$
\hookrightarrow<I 4
$$

$$
\hookrightarrow<I 5
$$

The
and thus is a terminal entity. This results in inserting a closed square bracket in the string :

[^3]8
en
\qquad
-

都

$$
\rightarrow<I 6[+I 20
$$

\qquad

The
last bi-
fur-
ca-
tion point can then be popped out of the bi-fur-cation point stack and the vis-it-
ing process can resume on the next possible continuation of $I 6$, i.e. $I 7$, leading eventually to the final output code string:

different scales, for example the scale of internodes, the scale of growth units and the scale of plants (Figure3.4 b). The depth first procedure explained above is generalized to multiscale structures in the following way. The multiscale coding strategy consists basically of describing the plant structure at the highest scale in a depth first order. However, during this process, each time a boundary of a macroscopic entity is crossed when passing from entity a to entity b, the corresponding macroentity label, suffixed by a ' $/$ ', must be inserted into the code string just before the label of b and after the edge type of (a, b). If more than one macroscopic boundary is crossed at a time, corresponding labels suffixed by ' $/$ ' must be inserted into the code string at the same location, labels of the most macroscopic entities first. In the multiscale graph of Figure 3.4 b for example, the depth first visit is carried out at the internode level (highest scale). The visit starts by entering in vertex I1 at the scale of internodes. However, to reach this entity from the outside, we cross boundaries of P1 and U1, in this order. Then the depth first visit starts by creating the code string :
\square

Let
us
now
ex-
tend
this
cod-
ing
strat-
egy
to
mul-
ti-
scale
struc-
tures.
Con-
sider
a
plant
described
at three
nd
gy
l-

a

```
/
@ 1/
\hookrightarrowU1/
|I
```

Then,
the
cod-
ing
pro-
cedes
through
ver-
tices
II
to
I6,
with
no
new
macroscopic bound-
ary
en-
coun-
tered.
I6
is
a bifurcation point and as explained above, this vertex is stored in the bifurcation point stack, a '[' is inserted in the code string and the depth first process continues on the son of $I 6$ whose label is $I 20$. Since to reach $I 20$ from $I 6$ the macroscopic boundary of the first growth unit of the branch is crossed, on $I 20$ the generated code string is

\square

	Similarly on and
the	
new	

		Once

on certain plant entities. Measured values can be attached to corresponding entities using a bracket notation, ' $\{. .$.$\} '.$ For instance, assume that one wants to note the length and the diameter of observed growth units. For each measured growth unit, a pair of ordered values defines respectively its measured length and diameter. Then, the precedent code string would become:

It
is
of-
ten
the case
in
prac-
ti-
cal
ap-
pli-
ca-
tions
that
a
num-
ber
of
at-
at-
tributes
are
mea-
sured

n
se

a
f

In
this
string,
we
can
read
that
the
first
growth
unit
of
the
trunk,
U1,
has
length
10
cm
and
di-
am-
e-
ter
5.9 mm (units are assumed to be known and fixed).

In order to give the user a better feedback of the plant topology in the code itself, we can slightly change the above code format in order to achieve better legibility. Each square bracket is replaced by a new line and an indentation level corresponding to the nested degree of this square bracket. Similarly, a new line is created after each feature set and the feature values are written in specific columns. The following table gives the final code corresponding to the
example in Figure3.3.

(continued from previous page)

ENTITY-CODE
$/ \mathrm{P} 1 / \mathrm{U} 1$
$\wedge / \mathrm{I} 1<\mathrm{I} 2<\mathrm{I} 3<1$
+U 1
$\wedge / \mathrm{I} 20<\mathrm{I} 2$
$\wedge / \mathrm{I} 25<\mathrm{I}$
$<\mathrm{I} 7<\mathrm{I} 8<\mathrm{I} 9<\mathrm{U}$
$/ \mathrm{I} 10<\mathrm{I} 11<\mathrm{I} 12$
$/ \mathrm{I} 16<\mathrm{I} 17<\mathrm{I} 18$

3.3.3 Explc
 a
 sim-
 ple
 ex-
 am-
 ple

Reading the MTG file

Once a
plant database has
been
cre-
ated,
it
can
be
an-
a-
lyzed
us-
ing
the
ope-
nalea.newmtg
python
pack-
age.
The
dif-
ferent objects, methods and models contained in openalea.newmtg can be accessed through Python language.
The
for-
mal
rep-
re-
sen-
ta-
tion
a
plant,
and
more
gen-
er-
ally
of
a
set
of
plants,
can
be
built
using the function $M T G()$:

from
\rightarrow openalea.
$\rightarrow \mathrm{mtg}$.
$\rightarrow \mathrm{aml}_{\sqcup}$
\rightarrow import
\hookrightarrow MTG
g
$\hookrightarrow={ }_{\bullet}$
\hookrightarrow MTG (
$\rightarrow ' w i j$.
$\leftrightarrow m t g$
\hookrightarrow^{\prime})

The
pro-
ce-
dure
MTG
at-
tempts
to
build
the
plant
for-
mal
rep-
re-
sen-
ta-
tion,
check-
ing
for
syn-
tac-
tic
and semantic correctness of the code file. If the file is not consistent, the procedure outputs a set of errors which have to be corrected before applying a new syntactic analysis. Once the file is syntactically consistent, the MTG is built (cf. Figure 3.4 b) and is available in the variable g.
() See Activate ()

Warning:
How-
ever,
for
ef-
fi-
ciency
rea-
sons,
the
lat-
est
con-
structed
MTG
is
said
to
be
ac-
tive
$:$
it
will

To
get
the
list
of
all
ver-
tices
con-
tained
in
g,
for
in-
stance,
we
write:

```
from
    openalea.
->mtg.
->aml
->import
\leftrightarrow \text { VtxList}
```



```
vlist_
    G
GtxList()
```

instead
of:
vlist
$\rightarrow={ }_{\square}$
\hookrightarrow VtxList (g)
The
func-
tion
VtxList()
ex-
tracts
the
set
of
ver-
tices
from
the
ac-
tive
MTG
and
re-
turns
the
re-
sult
in
vari-

Once
the
MTG
is
loaded,
it
is
fre-
quently
use-
ful
to
make
sure
that
the database

Abstract

the observed data. Part of this checking process has already been done by the $M T G$ () function. But, some high-level checking may still be necessary to ensure that the database is completely consistent. For instance, in our example, we might want to check the number of plants in the database. Since plants are represented by vertices at scale 1 , the set of plants is built by:

ac-
tu-
ally
cor-
re-
sponds
to

Like
vlist,
the
set
plants
is
a
set
of
ver-
tices.
The
num-
ber
of
plants
can
be
ob-
tained
by
com-
put-
ing

```
plant_
    ->nb
    \hookrightarrow=
    \hookrightarrowlen(plants
```

Note: In the former AML language, the function Size was used to get the length. Here a call to the standard python function len () is used.

Each

plant
con-
sti-
tut-
ing
the database
can
be
in-
di-
vid-
u-
ally
and
in-
ter-
ac-
tively
ac-
cessed
via
Python.

For instance, assuming the plant corresponding to the example of Figure 3.4 b is represented by a vertex (at scale 1) with label P1. Plant $P 1$ can be identified in the database by selecting the vertex at scale 1 having index 1:

Note: former AML code: plant1 = Foreach _p In plants : Select(_p, Index(_p)==1)

$$
\begin{aligned}
& \text { Ther } \\
& \hline
\end{aligned}
$$

superior scale. Since plantl is a vertex at scale 1 , representing plant $P 1$, components of plantl are vertices at scale 2 , i.e. growth units. It is also possible to compute the number of internodes composing a plant by simply specifying the optional argument Scale in function Components:


```
internode_
\hookrightarrownb
\hookrightarrow
len (Compor
\hookrightarrow
@cale=1))
\hookrightarrow#
should_
@return_
\hookrightarrow
```


3D representation

Example 1

Many
such
di-
rect
queries
can
be
made
on
the
plant
database
which
pro-
vide
in-
ter-
ac-
tive
ac-
cess
to
it.
How-
ever, a complementary synthesizing view of the database may be obtained by a graphical reconstruction of plant geometry. Geometrical parameters, like branching and phyllotactic angles, diameters, length, shapes, are read from the database. If they are not available, mean values can be inferred from samples or can be inferred from additional data describing plant general geometry ${ }^{19}$. A 3D interpretation of the MTG provides the user with natural feedback on the database. Built-in function PlantFrame () computes the 3D-geometry of plants. For example:
\square
\square

Todo: script that leads to the picture in figure 3.5

Example 2

[^4]

Fig. 9: Figure 3.5

Todo: in progress

Note: the previous example uses many functions that have not been introduced yet but they will be desribe later on.

Todo: CECHK that it workds in openalea.mtg : computes a 3D-geometrical interpretation of Pl topology at scale 2, i.e. in terms of growth units (Figure3.5 a). Like in the previous example, PlantFrame takes Scale as an optional argument which enables us to build the 3D-geometrical interpretation of P1 at the level of internodes (Figure3.5 b):

```
axes
    \hookrightarrow
    compute_
    ->axes (g,
\hookrightarrow
\hookrightarrow 3,
\hookrightarrow
@f.
->points,
\hookrightarrow
\hookrightarrowqF
๑Origin)
diameters
\hookrightarrow=
@f.
\hookrightarrowalgo_
\leftrightarrow \text { diameter()}
scene
\hookrightarrow
\hookrightarrowbuild_
scene (pf.
G
\hookrightarrow
\hookrightarrowpf.
\hookrightarroworigin,
\hookrightarrow
\hookrightarrowaxes,
\hookrightarrow
pf.
Mpoints,
\hookrightarrow
\rightarrow \text { diameters,}
\hookrightarrow
40000)
from
\hookrightarrow
vplants.
@plantgl.
\leftrightarrowall_
@mport
\hookrightarrowiewer
Viewer.
@isplay(sc
```

\qquad

Refinements
this

```


Fig. 10: Figure 3.5 An apple tree plotted with the python script above
change the shape of the different plant components, possibly at different scales, to tune geometrical features (length, diameter, insertion angle, phyllotaxy, ...) as functions of the topological position of entities in the plant structure.

\section*{Extraction of plant entity features}
using the function Feature ():
(
```

first_
Ggu
\hookrightarrow
Trunk (2)[
first_
\hookrightarrowgu_
\iotadiameter
\hookrightarrow"
\mapsto Feature(fi
->gu,
\bullet
\hookrightarrow
\hookrightarrow"Diameter
\hookrightarrow")

```

Note: Here Diameter is a property/feature contained in the MTG header. Feature's names can be found in MTG's header, or directly by instrospection using this python syntax:: [x for \(x\) in g.property_names()]

The
first
line
re-
trieves
the
ver-
tex
cor-
re-
spond-
ing
to
the
first

\begin{abstract}
Trunk () returns the ordered set of components of vertex P1, and operator @ with argument 1 selects the first element of this set). Then, in the second line, the diameter of this growth unit is extracted from the database. Variable first_gu_diameter then contains the value 5.9 (see the code file). Similarly the length of the first growth unit can be retrieved:
\end{abstract}
growth unit
of
the trunk
of
P1
(func-
tion
\(\square\)
```

first_
Ggu_
@length_
\hookrightarrow
Geature (f)
Gu,
\hookrightarrow
\hookrightarrow
\hookrightarrow"Length
\hookrightarrow")

```

Variable
first_gu_length

\section*{con-}
tains

\section*{value}

\section*{10.}

The
user
can
sim-
plify
this
ex-

\section*{trac-}
tion
by
cre-
at-
ing
alias
names
us-
ing
lambda
func-

> tion:

\footnotetext{
\(>\)
\(\hookrightarrow>\)
}
\(\hookrightarrow \sqcup\)
\(\rightarrow\) diameter
\(\hookrightarrow=\),
\(\rightarrow\) lambda \(_{\sqcup}\)
\(\hookrightarrow X: \sqcup\)
\(\rightarrow g\).
(continued from previous page)



It
is
then
pos-
si-
ble
with
these
func-
tions
to
build
data
ar-
rays
cor-
re-
spond-
ing
to
fea-
ture
val-
ues
associated with growth units:


\([10\).
\(\rightarrow 0\),
\(\rightarrow \sqcup\)
\(\rightarrow 7\).
\(\rightarrow 0\),
\(\rightarrow \sqcup\)
\(\rightarrow 4\).
\(\rightarrow 0\),
\(\rightarrow \sqcup\)
\(\rightarrow 8\).
\(\rightarrow 0\),
\(\rightarrow \sqcup\)
\(\rightarrow 7\).
\(\rightarrow 5]\)
Here,
VtxList
should
con-
tain
the
in-
dex
2
and
there-
fore
the
sec-
ond
line
re-
turns
10 cm ,
as
ex-
pected.
More-
over,
new synthesized attributes can be defined by creating new functions using these basic features. For example, making the simple assumption that the general form of a growth unit is a cylinder, we can compute the volume of a growth unit:
(continues on next page)
\(\qquad\)
Now, the user can use this new function on any growth unit entity as if it were a
feature recorded in
the MTG. For instance, the volume of the first growth unit is computed by:
\(\square\)
\(\rightarrow\) volume \(\rightarrow=\) •
\(\leftrightarrows\) volume (fir \(\rightarrow g u)\)

Todo: trunk and plant volumes using numpy.sum?

Todo: how and purpose of volume for the whole plant. Isnt' it the volume of the trunk ?

The
wood
vol-
ume
of
the whole
plant can be computed by:
plant_
\(\rightarrow\) volume
\(\rightarrow=\) ப
\(\rightarrow\) sum [volume
\(\rightarrow\) for \(_{\bullet}\)
\(\rightarrow \mathrm{gu}_{\bullet}\)
\(\rightarrow\) in
\(\rightarrow\) Component

\section*{Extracting more information from plant databases}

\section*{As}
il-
lus-
trated
in
the
pre-
vi-
ous
sec-
tion,
plant
databases
can
be
in-
ves-
ti-
gated by
build-
ing
priate Python lambda functions. Built-in words of the openalea.mtg.aml module may be combined in various ways in order to create new queries. In this way, more and more elaborated types of queries can be constructed by creating user-defined functions which are equivalent to computing programs. In order to illustrate this procedure, let us assume that we would like to study distributions of numbers of internodes per growth units, such distributions being an important basic prerequisite for botanically-based 3D plant simulations (e.g. \({ }^{29373}\) ). At a first stage, we consider all the growth units contained in the plant database together. We first need to define a function which returns the number of internodes of a given growth unit. Since in the database, each growth unit (at scale 2 ) is composed of internodes (at scale 3) we compute the set of internodes constituting a given growth unit \(x\) as follows:

```

internode_
set
\hookrightarrow
Clambda
\hookrightarrow):
\leftrightarrow Component:

```

The
ob-
ject
re-
turned
by
func-
tion
in-
tern-
ode_set()
is
a
set
of
ver-
tices.
The
num-
ber
of
in-
tern-
odes
of a given growth unit is thus the size of this set:

(continues on next page)

\footnotetext{
\({ }^{2}\) Barthélémy, D., 1991. Levels of organization and repetition phenomena in seed plants. Acta Biotheoretica, 39: 309-323.
\({ }^{9}\) de Reffye, P., Dinouard, P. et Barthélémy, D., 1991. Modélisation et simulation de l'architecture de l'Orme du Japon Zelkova serrata (Thunb.) Makino (Ulmaceae): la notion d'axe de référence. In: 2ème Colloque International sur l'Arbre, Montpellier (FRA) 9-14/09/90. Naturalia Monspeliensa, Vol. hors-série, pp. 251-266.

37 Jaeger, M. et de Reffye, P., 1992. Basic concepts of computer simulation of plant growth. In: The 1990 Mahabaleshwar Seminar on Modern Biology, Mahabaleshwar (IND) . Journal of Biosciences, Vol. 17, pp. 275-291.
\({ }^{3}\) Bouchon, J., de Reffye, P. et Barthélémy, D. (Eds), 1997. Modélisation et simulation de l'architecture des végétaux. Science Update. INRA Editions, Paris, France, 435 pp.
}

database. A set of vertices is created by selecting plant entities having a certain property.
\begin{tabular}{lll} 
& The \\
set \\
of
\end{tabular}
ply
func-
tion
in-
tern-
ode_nb()
to
each
el-
e-
ment
of
the
se-
lected
set
of
en-
ti-
ties:


Todo: in all the documentation, we should also emphasize the puire Pythonic style. For instance in the example above, we could have created a generator g.components () and then for \([l e n([x\) for x in \(\mathrm{g} . \operatorname{components}(\mathrm{y})])\) for y in gu_set]
```

 >
 >
 >
 l
 \hookrightarrowample1_
\hookrightarrow
\hookrightarrow [internode
@b (x)
\hookrightarrow)
\hookrightarrow)
Gin
Ggu_
\hookrightarrowgu_
>
->
\leftrightarrow>
\hookrightarrow
\checkmark
[9,
G
\hookrightarrow
\hookrightarrow\bullet
\hookrightarrow
\leftrightarrow6,

```

```

|
l
\hookrightarrow
\hookrightarrow5,

```
\begin{tabular}{|c|c|}
\hline & \\
\hline & list- \\
\hline & Python \\
\hline & syn- \\
\hline & tax \\
\hline & in \\
\hline & \\
\hline & der \\
\hline & \\
\hline & browse \\
\hline & \\
\hline & whole \\
\hline & \\
\hline & \\
\hline & growth \\
\hline & units \\
\hline & \\
\hline & \\
\hline & database, \\
\hline & and \\
\hline & to \\
\hline \multicolumn{2}{|l|}{apply our internode_nb() function to each of them.} \\
\hline & Now, we \\
\hline & want \\
\hline & \\
\hline & get \\
\hline & the \\
\hline & dis- \\
\hline & tri- \\
\hline & bu- \\
\hline & tion \\
\hline & \\
\hline & \\
\hline & num- \\
\hline & \\
\hline & \\
\hline & \\
\hline & tern- \\
\hline & \\
\hline & on \\
\hline & a \\
\hline & more \\
\hline & - \\
\hline & stricted \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{5}{*}{of growth units. More precisely, we would like to study the distribution of internode numbers of different populations corresponding to particular locations in the plant structure. We thus have to define these populations first and then to iterate the function internode_nb() on each entity of this new population like in the previous example. Let us consider for example the population made of the growth units composing branches of order 1. Consider again the whole set of growth units gu_set. Among them, those which are located on branches (defined as entities of order 1 in AML) are defined by:}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline
\end{tabular}

```

>
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrowgu1
\hookrightarrow
\hookrightarrow[\mp@subsup{x}{\bullet}{}
๑fOr
\hookrightarrow)
Gin
GtxList(Sc
>
\hookrightarrow>
\hookrightarrow
\hookrightarrow
\hookrightarrow[Order (x)
\hookrightarrow)
\hookrightarrow)
\hookrightarrowin
@gu1]
[0,
\hookrightarrow\bullet
\hookrightarrow
\hookrightarrow1,
G
\hookrightarrow
\bullet0]

```

Here again, we
use
the
Python list
com-
pre-
hen-
sion
in
or-
der to
browse
the whole
set
of
growth
units
of
the
database, and to apply the Order function to each of them. Then, in order to select growth unit vertices whose order is 1 (all the growth units in the corpus which are located on branches), change the above command into:


Eventually,
af-
ter
the
sam-
ple
of
val-
ues
is
built,
the above function is
ap-
plied
to
the
se-
lected
en-
ti-
ties :

Todo: figure out what was the input data for the following plots and use either pylab or Histogram or both .

Fore-
ach
_X
In
gu1
:
in-
tern-
ode_number(_x
At
this
stage,
a
set
of
val-
ues
has
been
ex-
tracted
from
the
plant database
cor-
re-
spond-
ing
to
a
topo-
log-
ically selected set of entities. This sample of data can be further investigated with appropriate AML tools. For example, AML provides the built-in function Histogram () which builds the histogram corresponding to a set of values.:


This
plot
gives
the
graph
de-
picted
in
Fig-
ure
3-
6a.
Sim-i-
larly,
by
se-
lect-

\title{
ing to different topological situations, we would obtain the series of plots in Figure 3-6 [4].
}
sam-
ples
cor-
re-
spond-

\subsection*{3.3.4 Type \\ of \\ ex- \\ tracted \\ data}
various
types
of
data
can
be
ex-
tracted
from
MTGs.
For
each
plant
com-
po-
nent
in
the
database,
at-
tributes
can
be
ex-
tracted or synthesised using the Python language. The wood volume of a component, for instance, can be synthesised from the diameter and the length of this component measured in the field. The type of measurement carried out in the context of architectural analysis emphasises the use of discrete variables which can be either symbolic, e.g. the type of axillary production at a given node (latent bud, short shoot or long shoot) or numeric (number of flowers in a branching structure). In general, a plant component can be qualified by a set of attributes, called a multivariate attribute. A plant component, for instance, could be described by a multivariate attribute made up of the volume, the number of leaves, the azimuth and the botanical type of the constituent.

Multivariate
at-
tributes
cor-
re-
spond
to


Different distributions of the number of internodes par growth unit, in different topological situations

Fig. 11: Figure 3.6
the
first
cat-
e-
gory
of
data
that
can
be
ex-
tracted
from
MTGs.
A
sec-
ond
and more complex category of particular importance is defined by sequences of - possibly multivariate - attributes. The aim of this category is to represent biological sequences that can be observed in the plant architecture. These sequences may have two origins: they can correspond to changes over time in the attributes attached to a given plant component. In this case, the sequences represent the trajectories of the components with respect to the considered attributes and the index parameter of the sequences is the observation date. Sequences can also correspond to paths in the tree topological structures contained in MTGs. In this case, the index parameter of the sequences is a spatial index that denotes the rank of the successive components in the considered paths. Spatially-indexed sequence is a versatile data type for which the attributes of a component in the path can be either directly extracted or synthesised from the attributes of the borne components. In the later case, all the information contained in the branching system can be efficiently summarised into a sequence of multivariate attributes, corresponding to the main axis of the branching system.

A
third
cat-
e-
gory
of
ob-
ject
can
be
ex-
tracted
from
MTGs,
namely
trees
of
-
mul-
ti-
vari-
ate
-
at-
tributes. Like sequences, these objects are intended to preserve part of the plant organisation in the extracted data.

Tree structures represent the raw organisation of the components that compose branching structures of the plant at a certain scale of analysis.

Data
ex-
tracted from MTGs can thus
be
or-
dered
ac-
cord-
ing
to
their
level
of
struc-
tural
com-
plex-
ity:
un-
struc-
tured data, sequences, trees. These levels correspond to different degrees to which the structural information contained in the MTG is summarised and are associated with different statistical analysis techniques.

\subsection*{3.3.5 Statis \\ ex- \\ plo- \\ ration \\ and \\ model \\ build- \\ ing \\ us- \\ ing \\ other \\ Openalea/VPla \\ pack- \\ ages \\ To \\ ex- \\ plore \\ plant \\ ar-}

\begin{abstract}
chi-
tec-
ture,
users are frequently

\section*{sam-}
ples
ac-
cord-
ing
to
topo-
logical criteria on plant architecture. A wide range of AML primitives that apply to MTGs enable the user to express these topological criteria and select corresponding plant components. Samples of the three main structural data types can be created as described below:

Multivariate
sam-
ples:
Sim-
ple
data
sam-
ples
can
be
cre-
ated
by
com-
put-
ing
the set
of
-
pos-
si-
bly
multivariate - attributes associated with a selected set of components, e.g. the number of flowers borne by components that appeared in the plant structure during 1995. The packages openalea.stat_tool and openalea.sequence_analysis provides a core of tools for exploring these objects. However, a very large panoply of methods are available in other statistical packages for analysing multivariate samples (the user can export data to other softwares such as RPy).
\end{abstract}

\author{
Samples \\ of \\ mul-
}
ti-
vari-
ate
se-
quences:
In
the
con-
text
of
plant
ar-
chi-
tec-
ture
anal-
y-
sis,
MTG
ob-
jects
present two advantages. On the one hand, part of the plant organisation is directly preserved in the sample through the notion of 'sequence" discussed above. On the other hand, the structural complexity of samples of sequences still remains tractable and efficient exploratory tools and statistical models can be designed for them \({ }^{2829}\). The openalea.sequence_analysis system includes mainly classes of stochastic processes such as (hidden) Markov chains, (hidden) semi-Markov chains and renewal processes for the analysis of discrete-valued sequences. A set of exploratory tools dedicated to sequences built from numeric variables is also available, including sample (partial) autocorrelation functions and different types of linear filters (for instance symmetric smoothing filters to extract trends or residuals).
Samples
of
mul-
ti-
vari-
ate
trees:
The
anal-
y-
sis
of
sam-
ples
of
tree
struc-
tured
data
is
a
\({ }^{28}\) Guédon, Y., Barthélémy, D. et Caraglio, Y., 1999. Analyzing spatial structures in forests tree architectures. In: Salamandra (Ed) Empirical and process-based models for forest tree and stand growth simulation, Oeiras, Portugal 21-27/09/1997, pp. 23-42.
\({ }^{29}\) Guédon, Y. et Costes, E., 1999. A statistical approach for analyszing sequences in fruit tree architecture. In: Wagenmakers P.S., van der Werf W., Blaise Ph. (Eds), 5th International Symposium on Computer modelling in fruit research and orchard management, Wageningen, The Netherlands 28-31/07/1998. Acta Horticulturae, pp. 271-280.
chal-
leng-
ing
problem. A sample of trees could represent a set of comparable branching systems considered at different locations in a plant or in several plants. Similarly, the development of a plant can be represented by a set of trees, representing different steps in time of a branching system. Plant organisation for this type of object is relatively well preserved in the raw data. However, this requires a higher degree of conceptual and algorithmic complexity. We are currently investigating methods for computing distances between trees \({ }^{13}\) which could be used as a basis for dedicated statistical tools.

OpenAlea/VPla
con-
tains
a
large
set
of
tools
for
analysing
these
dif-
fer-
ent
types
of
sam-
ples,
with
spe-
cial
em-
pha-
sis
on tools dedicated to the analysis of samples of discrete-valued sequences. These tools fall into one of the three following categories:
-
exploratory
anal-
y-
sis
re-
ly-
ing
on
de-
scrip-
tive
meth-
ods
(graph-
i-

\footnotetext{
\({ }^{13}\) Ferraro, P. et Godin, C., 1998. Un algorithme de comparaison d'arborescences non ordonnées appliqué à la comparaison de la structure topologique des plantes. In: SFC’98, Recueil des Actes, Montpellier, France 21-23/09/1998, Agro Monpellier, pp. 77-81.
}
cal
display, com-pu-
tation of
characteristics such as sample autocorrelation functions, etc.),
parametric model building,
comparison
tech-
niques
(be-
tween
in-
di-
vid-
ual
data).
The
aim
of
build-
ing
a
model
is
to
ob-
tain
ad-
e-
quate
but
par-
si-
mo-
nious
rep-
re-
sen-
ta-
tion
of samples of data. A parametric model may then serve as a basis for the interpretation of a biological phenomenon. The elementary loop in the iterative process of model building is usually broken down into three stages:
1.

the data sample. This model is chosen from within the family determined at the specification stage. Automatic methods of model selection are available for classes of models such as (hidden) Markov chains dedicated to the analysis of stationary discrete-valued sequences. The estimation is always made by algorithms based on the maximum likelihood criterion. Most of these algorithms are iterative optimisation schemes which can be considered
as applications of the Expectation-Maximisation (EM) algorithm to different families of models, \({ }^{122627}\). The EM algorithm is a general-purpose algorithm for maximum likelihood estimation in a wide variety of situations best described as incomplete data problems.
to reveal inadequacies and thus modify the a priori specified family of models. Theoretical characteristics can be computed from the estimated model parameters to fit the empirical characteristics extracted from the data and used in the exploratory analysis.

The
para-
met-
ric
ap-
proach
based
on
the
pro-
cess
of
model
build-
ing
is
com-

\footnotetext{
\({ }^{12}\) Dempster, A.P., Laird, N.M. et Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39: 1-38.
\({ }^{26}\) Guédon, Y., 1998. Analyzing nonstationary discrete sequences using hidden semi- Markov chains. Document de travail du programme Modélisation des plantes, 5-98. CIRAD, Montpellier, France, 41 pp .
\({ }^{27}\) Guédon, Y., 1998. Hidden semi-Markov chains: a new tool for analyzing nonstationary discrete sequences. In: 2nd International Symposium on Semi-Markov models: theory and applications, J. Janssen et N. Limnios (Eds), Compiègne, France 09-11/12/1998, Université de Technologie de Compiègne, pp. 1-7.
}
ric approach based on structured data alignment (either sequences or trees). Distance matrices built from the piece by piece alignments of a sample of structured data can be explored by clustering methods to reveal groups in the sample.


\subsection*{3.3.6 Biblic}
3.4 Illust
ex-
plor-
ing
an
ap-
ple
tree
or-
chard

Todo: This section has to be validated (e.g., translate aml code into python)
now
il-
lus-
trate
the
us-
age
of
ope-
nalea.mtg
pack-
age
to-
gether
with
other
pack-
ages
such
as
ope-
nalea.sequence
in a real application. To do this, we shall consider an apple tree orchard and show how a plant architecture database can be created from observations \({ }^{24}\). Then, we shall use this database to illustrate the use of specific tools employed to explore plant architecture databases.
3.4.1 Biolo
con-
text
and
data
col-
lec-
tion

The
ap-
pli-
ca-
tion
is
part
of
a
gen-
eral
se-
lec-
tion

\footnotetext{
\({ }^{24}\) Godin, C., Guédon, Y. et Costes, E., 1999. Exploration of plant architecture databases with the AMAPmod software illustrated on an apple-tree bybird family. Agronomie, 19(3/4): 163-184.
}

\begin{abstract}
tional de la Recherche Agronomique), and aims to improve apple tree species as regards morphological characters and more classical criteria such as fruit quality and disease resistance. In this particular example, two apple tree clones were chosen for their contrasting growth and branching habits. The first clone ('Wijcik') exhibits a very particular growth and branching habit, characterised by short internodes, great diameters and the absence of long axillary branches. By contrast, the second clone ('Baujade') exhibits many long and flexible branches. A population of 102 hybrids was obtained by crossing these two clones. The objective of this work was to study how morphological characters, such as the length of the internodes or the number of long lateral branches, are distributed within the progeny.
\end{abstract}
pro-
gram,
con-
ducted at
INRA
(In-
sti-
tut
Na-
(hers
Creation
of
the
database:
The
branch-
ing
sys-
tems
borne
by
the
three-
year-
old
an-
nual
shoot
of
the
trunk
is
de-
scribed
give
a
quan-
ti-
ta-
tive
idea
of
the
to-
tal
re-
sources
nec-
es-
sary
for
an
ap-
pli-
cation of this size, it should be noted that all the measures were carried out by a team of 6 persons over 5 days. The collected data, initially recorded on paper, were then computer-entered by 1 person over 20 days using a text editor and consists of a file of approximately 16000 lines of code. The corresponding MTG is constructed in 45 seconds on a SGI-INDY workstation. It contains about 65000 components and some 15000 attributes. The overall size of the database is 7 Mb .
3.4.2 3D
vi-

\section*{su-}
al-
i-
sa-
tion
of
real
plants
To
build
the
database
as-
so-
ci-
ated
with
the
col-
lected
data,
the
AMAP-
mod
sys-
tem
is
launched
and
an
MTG
is
built from the encoded plant file:
\(\square\)
```

plant_
cdatabase
\hookrightarrow=
\hookrightarrowMTG(
\hookrightarrow"wij.
๑mtg
\hookrightarrow")

```

\section*{The}
prim-
i-
tive
MTG
at-
tempts
to
build
a
for-
mal
rep-
re-
sen-
ta-
tion
of
the
or-
chard,
check-
ing
for
syntactic and semantic correctness of the code file. If the file is not consistent, the procedure outputs a set of errors which must be corrected before applying a new syntactic analysis. Once the file is syntactically consistent, the MTG is built and is available in the variable plant_database. However, for efficiency reasons, the latest constructed MTG is said to be 'active": it will be considered as an implicit argument for most of the primitives dealing with MTGs. For example, to obtain the set of vertices representing the plants contained in the database, i.e. vertices at scale 1, the primitive VtxList is used and applies by default to the active MTG plant_database:
\begin{tabular}{|c|c|}
\hline
\end{tabular}

\footnotetext{
plant_
\(\rightarrow\) list \(_{5}\)
\(\hookrightarrow=\) ப
\(\hookrightarrow\) VtxList (S
}

It
is
then
pos-
si-
ble
to
ob-
tain
an
ini-
tial
feed-
back
on
the
col-
lected
data
by
dis-
play-
ing
a
3D geometrical interpretation of a plant from the MTG. This notably allows the user to rapidly browse the overall database. For instance, a geometric interpretation of the 5th plant in the set of plants described in the MTG can be computed and plotted using the primitive PlantFrame as follows, ( Figure 3-7a):


Todo: continue to adapt the documenation from here including example here above
```

geom_
->struct
\hookrightarrow
\bulletPlantFrame
->list[4])
Plot (geom_
->struct)

```

Such
re-
con-
struc-
tions
can
be
car-
ried
out
even
if
no
ge-
o-

\begin{abstract}
in the collected data. In this case, algorithms are used to infer the missing data where possible (otherwise, default information is used) \({ }^{19}\). In other cases, plants are precisely digitised and the algorithms can provide accurate 3D geometric reconstructions \({ }^{7224648}\).
\end{abstract}
metric in-

\section*{for-}
ma-
tion
is
avail-
able
another important role: they can be used as a support to graphically visualise how various sorts of information are distributed in the plant architecture. Figure 3-7b for example shows the organisation of plant components according to their branching order (trunk components have order 0 , branch components have order 1 , etc.). This would be obtained by the following commands:


\footnotetext{
\({ }^{19}\) Godin, C., Bellouti, S. et Costes, E., 1996. Restitution virtuelle de plantes réelles : un nouvel outil pour l'aide à l'analyse de données botaniques et agronomiques. In: L'interface des mondes réels et virtuels, 5èmes Journées Internationales Informatiques, Montpellier, France 22-24/05/96, pp. 369-378.
\({ }^{7}\) Costes, E., Sinoquet, H., Godin, C. et Kelner, J.J., 1999. 3D digitizing based on tree topology : application to study th variability of apple quality within the canopy. Acta Horticulturae, in press.
\({ }^{22}\) Godin, C., Costes, E. et Caraglio, Y., 1997. Exploring plant topology structure with the AMAPmod software : an outline. Silva Fennica, 31(3): 355-366.
\({ }^{46}\) Sinoquet, H., Adam, B., Rivet, P. et Godin, C., 1998. Interactions between light and plant architecture in an agroforestry walnut tree. Agroforestry Forum, 8(2): 37-40.
\({ }^{48}\) Sinoquet, H., Rivet, P. et Godin, C., 1997. Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica, 31(3): 265-273.
}

```

-

\hookrightarrow
\bullet
\bullet
\hookrightarrowCase
\hookrightarrow1:
\hookrightarrowDarkGrey
\hookrightarrowCase
\hookrightarrow2:
\hookrightarrowightGrey
CMase
\hookrightarrow3:
Black
-
\hookrightarrow
\hookrightarrow
\hookrightarrow
๑Default:
\hookrightarrowWhite
Plot (geom_
struct,
\hookrightarrow
\hookrightarrow C o l o r = c o l c
@Order)

```

This
rep-
re-
sen-
ta-
tion
em-
pha-
sises
dif-
fer-
ent
in-
for-
ma-
tions
re-
lated
to
the
branch-
ing
or-
der:
it can be seen in Figure 3-7b that the maximum branching order is 4, that this order is reached only once in the tree crown, and that this occurs at a floral site (black component).

The
use
of

\section*{the}
of plant growth analysis. The year in which each component grew can be retrieved from a careful analysis of the plant morphological makers. If this information is recorded in the MTG, it is then possible to colour the different components accordingly. Figure 3-7c shows, for instance, that a branch appeared on the trunk during the first year of growth. This information can then be linked to other data, e.g. the branching order of a component or the number of fruits borne by a component, and thus provides deeper insight into the plant growth process.
tion can be projected onto the plant structure. Let us consider again the context of plant growth analysis. Plant growth is characterised by rhythms that result in the production of long internodes during periods of high activity and short internodes during rest periods (indicated on the plant by scares close together). These informations, at the level of
internodes, can be projected onto the plant 3D structure (Figure 3-7d). Like the year of growth, this information enables us to access plant growth dynamics, but now, at an intra-year scale.

Finally,
an-
other
use
for
the
vir-
tual
re-
con-
struc-
tion
of
mea-
sured
plants
is
il-
lus-
trated
in
Fig-
ure
3-
8 a and 8 b . These plants have been reconstructed from the MTG at the scale of each leafy internode. This enables us to obtain a natural representation of the plant which can be used for instance in models that are intended to describe the interaction of the plant and its environment (e.g. light) at a detailed level, e.g. \({ }^{41}\). More generally, the user can plot a set of plants from the database (Figure 3-9):

```

orchard
\hookrightarrow=
aml.
@lantFrame
@list)
aml.
@Plot (orch

```

\subsection*{3.4.3 Extra}
of
data
sam-
ples
Visualizing
in-
for-
ma-
tions

\footnotetext{
\({ }^{41}\) Rapidel, B., 1995. Etude expérimentale et simulation des transferts hydriques dans les plantes individuelles. Application au caféier (Coffea arabica L.). Thèse Doctorat, Université des Sciences et Techniques du Languedoc (USTL), Montpellier, France, 246 pp.
}

\begin{abstract}
database. More quantitative explorations can be carried out and the most simple of these consists of studying how specific characters are distributed in the architecture of the plant population. To do this, samples of components are created corresponding to some topological or morphological criteria, and the distributions of one or several characters (target characters) are studied on this sample. This data extraction always follows the three following steps:
\end{abstract}
pro-
jected
onto
the
3D
rep-re-
sen-
ta-
tion
of
plants
is
one
way
to
ex-
plore
the
Firstly,
a
sam-
ple
of
com-
po-
nents
is
cre-
ated
to
study
the
put
of
these

\section*{three}
op-
er-
a-
tions
is
a
set
of
val-
ues
that
can
be
anal-

\section*{ysed}
and
vi-
su-
alised in various ways. Let us assume for instance that we wish to determine the distribution of the number of internodes produced during a specific growth period for all the plants in the database. It is first necessary to determine the sample of components on which we wish to study this distribution. In our case, we assume that we are interested in the growth units of the trunk that are produced during the first year of growth. This would be written as:


\footnotetext{
sample
\(\rightarrow=\) ப
\(\hookrightarrow\) Foreach
\(\rightarrow-\)
\(\hookrightarrow\) component
\(\rightarrow \mathrm{In}_{\sqcup}\)
\(\rightarrow\) growth_
\(\rightarrow\) unit_
\(\rightarrow\) list:
-
\(\rightarrow \sqcup\)
\(\rightarrow \sqcup\)
\(\hookrightarrow_{\bullet}\)
\(\hookrightarrow\) Select (_
\(\rightarrow\) component,
\(\rightarrow\) Order (_
\(\rightarrow\) component
\(\rightarrow==\) -
\(\rightarrow 0_{4}\)
\(\rightarrow\) And
\(\rightarrow \sqcup\)
\(\rightarrow \sqcup\)
\(\rightarrow \sqcup\)
\(\rightarrow\) Index (_
\(\rightarrow\) component)
\(\rightarrow==\) 」
\(\rightarrow 90\) )
}

The
vari-
able
sam-
ple
thus
con-
tains
the
set
of
growth
units
whose
or-
der
is
0
(i.e.
which
are
parts
of
trunks)
and whose growth year is 1990 (assuming 1990 corresponds to the first year of growth). The second step consists of defining the target character. This can be done by defining a corresponding function:

```

nb_
๑f_
\rightarrow internodes
\hookrightarrow
lambda
->x:
\rightarrow l e n ~ (C o m p o r ~

```

The
num-
ber
of
in-
tern-
odes
of
a
com-
po-
nent
_X
(as-
sumed
to
be
a
growth
unit)
the size of the set of components that compose this growth unit _x (assuming that growth units are composed of internodes). Finally, this function is applied to each component in the previously selected sample and the corresponding histogram is plotted (Figure 3-10):
(
```

sample_
๑values
\hookrightarrow=
\leftrightarrow H i s t o g r a m ~
-
\rightarrow component
|In
\hookrightarrowsample
->:nb_
๑f_
\iotainternodes
\rightarrow component)
Plot(sample_
๑values)

```

This
ex-
am-
ple
il-
lus-
trates
the
kind
of
in-
ter-
ac-
tion
a
user
may
ex-
pect
from
the
ex-
plo-
ration
of tree architecture. In the field, the growth units of the trunks produced during the first year of growth present a variable length, ranging roughly from 10 to 100 internodes. However, the quantitative exploration of the database shows that the histogram exhibits two relatively well-separated sub-populations of components (Figure 3-10). The sub-population of short components corresponds to the first annual shoots of the trunk, made up of two successive intra-annual growth units, while the sub-population of long components corresponds to the first annual shoots made up of a single growth unit.
global distribution is a mixture of two parametric distributions, more precisely, two negative binomial distributions. The parameters of this model can be estimated from the above histogram as follows:

```

mixture
G}
\leftrightarrow Estimate (s
svalue,
\hookrightarrow
\hookrightarrow
\hookrightarrow"MIXTURE
\hookrightarrow",
\hookrightarrow
\hookrightarrow"NEGATIVE
->BINOMIAL
\hookrightarrow",
\hookrightarrow
\hookrightarrow
\hookrightarrow"NEGATIVE
\hookrightarrowBINOMIAL
\hookrightarrow")
Plot(mixture

```

For
all
para-
met-
ric
mod-
els
in
the
sys-
tem,
the
func-
tion
Es-
ti-
mate
per-
forms
both
pa-
ram-
e-
ter
estimation and computation of various quantities (likelihood of the observed data for the estimated model, theoretical characteristics, etc) involved in the validation stage. As demonstrated by the cumulative distribution functions in Figure 3-11b, the data are well fitted by the estimated mixture of two negative binomial distributions. The weights of the two components of the mixture are very close \((0.49 / 0.51)\), the first being centred on 21 internodes and the second on 53 internodes (Figure 3-11a). Due to the small overlap of these two mixture components (Figure 3-11a), the extracted sample can be optimally split up into two optimal sub-populations with a threshold fixed at 37.

As
il-
lus-
trated
in
this
ex-
am-
ple,
us-
ing
AMAP-
mod,
the
user
can
query
the
database,
make
as-
sump-
tions
and
look for data regularities. This interactive exploration process enables the user to build a rich and detailed mental representation of the architectural database, which relies on various complementary viewpoints.
```

3.4.4 Extra
and
anal-
y-
sis
of
bi-
O-
log-
i-
cal
se-
quences

```

The
pre-
vi-
ous
sec-
tion
il-
lus-
trates
the
ex-
trac-
tion
of
a
sim-
ple
sam-
ple
type,
made
up
of
nu-
meric values. In this section, we consider a more complex sample type, made up of sequences of values. For example, in the apple tree database, let us consider sequences of lateral productions along trunks. Our aim is to analyse how lateral branches are distributed along the trunks of hybrids.
plant,

    the
90
an-
nual
shoot
of
the
trunk
    is
    de-
    scribed
    node
    by
node from the base to the top. Each node is qualified by the type of lateral production (latent bud: 0, one-year-delayed short shoot: 1, one-year-delayed long shoot: 2 and immediate shoot: 3 ). This sample of sequences is built as follows:


AML>
\(\hookrightarrow \sqcup\)
\(\hookrightarrow\) Seq \(_{\llcorner }\)
\(\rightarrow={ }_{\square}\)
\(\hookrightarrow\) Foreach
\(\rightarrow\)
\(\rightarrow\) component
\(\rightarrow \mathrm{In}_{\sqcup}\)
\(\rightarrow\) growth_
\(\rightarrow\) unit_
\(\rightarrow\) sample
\(\rightarrow\) :
Foreach
\(\rightarrow-\)
\(\rightarrow\) node \(_{\leftrightarrows}\)
\(\rightarrow \mathrm{In}_{\sqcup}\)
\(\rightarrow\) Axis(_
\(\rightarrow\) component,
\(\rightarrow \sqcup\)
\(\rightarrow\) Scale
\(\rightarrow-\)
\(\rightarrow>\)
\(\rightarrow \sqcup\)
\(\rightarrow 4) \sqcup\)
\(\rightarrow\) :
Switch
\(\rightarrow\) lateral_
\(\rightarrow\) type (_
\(\rightarrow\) node)
Case
\(\rightarrow B U D:\) 」
\(\rightarrow 0_{\text {ப }}\)
\(\rightarrow \mathrm{Case}_{4}\)
\(\rightarrow\) SHORT:
\(\rightarrow 1_{\text {- }}\)
\(\rightarrow\) Case \(_{5}\)
\(\rightarrow\) LONG:
\(\rightarrow 2\)
Case
\(\hookrightarrow\) IMMEDIATE
\(\rightarrow 3_{\text {L }}\)
\(\rightarrow\) Default:
\(\rightarrow\) Undef
\(\qquad\)

The
AML
vari-
able
growth_unit_sa
con-
tains
the
set
of
growth
units
of
in-
ter-
est
(as-
sumed
to
be
se-
lected
be-
fore).
For each component in this set, the array of nodes that compose its main axis is browsed by the second Foreach construct. Finally, for each node, a function lateral_type() (defined elsewhere) is used to encode the nature of the lateral production at that node.

Figure
3-
12
il-
lus-
trates
the
di-
ver-
sity
of
annual shoot branching struc-
tures
en-
coun-
tered
in
the
stud-
ied hybrid family, which results from the different branching habits of the two parents. In our context, we wish to characterise and classify the hybrids according to their branching habits. The difficulty arises from the fact that the branching pattern is made of a succession of branching zones which are not characterised by a single type of lateral production but by a combination of types (e.g. short shoots interspersed with latent buds). We shall use this example to illustrate how parametric models may be used in AMAPmod to identify and characterize successive branching zones along these annual shoots.
\begin{tabular}{ll} 
& We \\
as- \\
sume \\
that \\
se-
\end{tabular}
of zones, each zone being characterised by a particular combination of lateral production types. To model this twolevel structure, we use a hierarchical model with two levels of representation. At the first level, a semi-Markov chain (Markov chain with null self-transitions and explicit state occupancy distributions) represents the succession of zones along the annual shoots and the lengths of each zone \({ }^{62829}\). Each zone is represented by a state of the Markov chain and the succession of zones are represented by transitions between states. The second level consists of attaching to each state of the semi-Markov chain a discrete distribution which represents the lateral productions types observed in the corresponding zone. The whole model is called a hidden semi-Markov chain \({ }^{2627}\).
\({ }^{2}\) Costes, E. et Guedon, Y., 1997. Modelling the sylleptic branching on one-year-old trunks of apple cultivars. Journal of the American Society
for Horticultural Science, 122(1): 53-62.
\({ }^{28}\) Guédon, Y., Barthélémy, D. et Caraglio, Y., 1999. Analyzing spatial structures in forests tree architectures. In: Salamandra (Ed) Empirical and
process-based models for forest tree and stand growth simulation, Oeiras, Portugal 21-27/09/1997, pp. 23-42.
\({ }^{29}\) Guédon, Y. et Costes, E., 1999. A statistical approach for analyszing sequences in fruit tree architecture. In: Wagenmakers P.S., van der
Werf W., Blaise Ph. (Eds), 5th International Symposium on Computer modelling in fruit research and orchard management, Wageningen, The
Netherlands 28-31/07/1998. Acta Horticulturae, pp. 271-280.
\({ }^{26}\) Guédon, Y., 1998. Analyzing nonstationary discrete sequences using hidden semi- Markov chains. Document de travail du programme
Modélisation des plantes, 5-98. CIRAD, Montpellier, France, 41 pp.
\({ }^{27}\) Guédon, Y., 1998. Hidden semi-Markov chains: a new tool for analyzing nonstationary discrete sequences. In: 2nd International Symposium
on Semi-Markov models: theory and applications, J. Janssen et N. Limnios (Eds), Compiègne, France 09-11/12/1998, Université de Technologie
de Compiègne, pp. 1-7.

The model pa-ram-eters

\footnotetext{
\({ }^{6}\) Costes, E. et Guedon, Y., 1997. Modelling the sylleptic branching on one-year-old trunks of apple cultivars. Journal of the American Society for Horticultural Science, 122(1): 53-62.
\({ }^{28}\) Guédon, Y., Barthélémy, D. et Caraglio, Y., 1999. Analyzing spatial structures in forests tree architectures. In: Salamandra (Ed) Empirical and process-based models for forest tree and stand growth simulation, Oeiras, Portugal 21-27/09/1997, pp. 23-42.
\({ }^{29}\) Guédon, Y. et Costes, E., 1999. A statistical approach for analyszing sequences in fruit tree architecture. In: Wagenmakers P.S., van der Werf W., Blaise Ph. (Eds), 5th International Symposium on Computer modelling in fruit research and orchard management, Wageningen, The Netherlands 28-31/07/1998. Acta Horticulturae, pp. 271-280.

Guédon, Y., 1998. Analyzing nonstationary discrete sequences using hidden semi- Markov chains. Document de travail du programme Modélisation des plantes, 5-98. CIRAD, Montpellier, France, 41 pp.
\({ }^{27}\) Guédon, Y., 1998. Hidden semi-Markov chains: a new tool for analyzing nonstationary discrete sequences. In: 2nd International Symposium on Semi-Markov models: theory and applications, J. Janssen et N. Limnios (Eds), Compiègne, France 09-11/12/1998, Université de Technologie de Compiègne, pp. 1-7.
}
timate:
(
```

hsmc
\hookrightarrow=
\rightarrow Estimate(s
\bullet
\hookrightarrow
\hookrightarrow"HIDDEN_
->SEMI-
๑MARKOV
↔",
\bullet
\hookrightarrowinitial_
->hsmc,
\leftrightarrow Segmentat
\hookrightarrow
\rightarrow True)

```

The
first
ar-
gument
seq
rep-
re-
sents
the
ex-
tracted
se-
quences,
"HIDDEN_SEI
MARKOV"
spec-
i-
fies

\begin{abstract}
3-13 with the following convention: each state is represented by a box numbered in the lower right corner. The possible transitions between states are represented by directed edges with the attached probabilities noted nearby. Transient states are surrounded by a single line while recurrent states are surrounded by a double line. State i is said to be recurrent if starting from state \(i\), the first return to state \(i\) always occurs after a finite number of transitions. A nonrecurrent state is said to be transient. The state occupancy distributions which represent the length of the zones in terms of number of nodes are shown above the corresponding boxes. The possible lateral productions observed in each zone are indicated inside the boxes, the font sizes being roughly proportional to the observation probabilities(for state 3 , these probabilities are \(0.1,0.62\) and 0.28 while for state 4 , these probabilities are \(0.01,0.07\) and 0.92 for latent bud, one-year-delayed short shoot and one-year-delayed long shoot respectively). State 0 which is the only transient state is also the only initial state as indicated by the edge entering in state 0 . State 0 represents the basal non-branched zone of the annual shoots. The remaining five states constitute a recurrent class which corresponds to the stationary phase of the sequences.
els and initial_hsmc is an initial hidden semi-Markov chain which summarises the hypotheses made in the specification stage. An optimal segmentation of the sequences is required by the optional argument Segmentation set at True.
\end{abstract}

\section*{the}
fam-
in-
sight into
the
struc-
ture
of
the
90
an-
nual
shoot
of
the
trunk for the 102 hybrids. The adequacy of the estimated model to the data is checked by examining the fitting of theoretical characteristic distributions computed from the model parameters to the corresponding observed characteristic distributions extracted from the data. Counting characteristic distributions for example focus on the number of occurrences of a given feature per sequence. The two features of interest are the number of series (or clumps) and the number of occurrences of a given lateral production type per sequence. The fits of counting distributions (Figure 3-14) can be plotted by the following function:
\(\square\)
ure 3-12) can be extracted from the model as a by-product of estimation of model parameters by the following function:



\(\qquad\)

\begin{abstract}
a given number of long shoots, these can be either scattered (Figure 3-12c) or aggregated in a dense zone (Figure \(3-12 \mathrm{~d})\). This is confirmed by comparing the empirical distributions of the number of series with the number of occurrences of axillary long shoots per sequence extracted from the two hybrid sub-populations. The empirical distributions of the number of series/number of occurrences of axillary long shoots (coded by 2 ) per sequence for the sub-population close to the Wijcik parent can be simultaneously plotted by the following function (Figure 3-15a):
\end{abstract}
(

AML>
\(\rightarrow \sqcup\)
\(\rightarrow\) Plot (Extr
\(\rightarrow\) seq,
\(\rightarrow\)
\(\hookrightarrow\)
\(\hookrightarrow " N b S e r i e s\)
\(\hookrightarrow "\),
\(\hookrightarrow \sqcup\)
\(\hookrightarrow 2\),
\(\hookrightarrow\) •
\(\rightarrow 2)\),
\(\hookrightarrow \sqcup\)
\(\hookrightarrow\) ExtractHis
\(\rightarrow\) seq,
\(\rightarrow \sqcup\)
\(\hookrightarrow\)
\(\hookrightarrow " N b O c c u r r e\)
\(\hookrightarrow "\),
\(\rightarrow \bullet\)
\(\leftrightarrow 2\),
\(\hookrightarrow \sqcup\)
\(\rightarrow 2\) ) )

These
em-
pir-
i-
cal
dis-
tri-
bu-
tions
are
very
sim-
i-
lar
for
the
sub-
population
close
to
the
Wi-
j-
cik
parent, (Figure 3-15a). Most of the series are thus composed of a single long shoot. These empirical distributions are very different for the sub-population close to the Baujade parent, (Figure 3-15b). In this case, the series are frequently composed of several successive long shoots.

The
stud-

\section*{ied}
sam-
ple
of
se-

\section*{quences}
en-
compasses a
broad
spec-

\section*{trum}
of
branch-
ing
habits
rang-
ing
from
the
Wi-
jcik to the Baujade parent one. Hence, the building of a parametric model is mainly used for identifying a discrimination rule to separate the initial sample of branching sequences into two sub-samples.


\subsection*{3.4.5 Biblic}
3.5 Tutor

Cre-
ate
MTG
file
from
scratch

This
tu-
to-
rial
briefly
in-
tro-
duces
the
main
fea-
tures
of
the
pack-
age
and
should
show


```

print_
G
4nb_
@scales()
root
\hookrightarrow}
G.
root
print
G.
\leftrightarrow s c a l e (r o o t ~

```

First,
the
pack-
age
is
im-
ported
(line
1).
-
Then,
a
mtg
is
in-
stan-ti-
ated
with-
out
pa-
ram-
e-
ters
(line
3).
-
However,
as
for
a
Tree,
the
mtg
is
not
empty
(line
5-
7).

There
is
al-
ways
a
root
node
at
scale
0
(line
9.
10).

\subsection*{3.5.2 Simp}
edi-
tion

We
add
a
com-
po-
nent
rootl
to
the
root
node,
which
will
be
the
root
node
of
the
tree
at
the
scale
1.

3.5. Tutorial: Create MTG file from scratch
```

root1_
G}
G.
->add_
\rightarrow component
\hookrightarrow\#
\leftrightarrowthe.
stree_
\hookrightarrowat
@scale
Cl
aby

```
(continued from previous page)
(continued from previous page)
```

G\#
\hookrightarrow)O
sthe
\hookrightarrowvertex_
\hookrightarrow`root1`
\hookrightarrow
v1_
G}
G
\hookrightarrowadd_
\hookrightarrow child(root
v2■
G
\hookrightarrowg.
add_
\leftrightarrow c h i l d (r o o t ~
v3
\hookrightarrow
G
\hookrightarrowadd_
child(root
g.
@parent (v1)
\hookrightarrow==
\hookrightarrowroot1
g.
\leftrightarrow c o m p l e x ~ (v ~
\hookrightarrow==
root
v3
\hookrightarrowin
G
siblings(

```
3.5.3 Trave
the
mtg
at
one
scale
The
mtg
can
be
tra-
versed
at
any
scales
like


arning:
On
MTG
data
struc-
ture,
meth-
ods
that
re-
\[
\begin{array}{|lll}
\hline \text { leng. } & & \text { it- } \\
\text { er- } \\
\text { a- } \\
\text { tor } \\
\text { into }
\end{array}
\]

\subsection*{3.5.4 Full}
ex-
am-
ple:
how
to
cre-
ate
an
MTG
\begin{tabular}{|c|c|}
\hline
\end{tabular}
from
\(\rightarrow\) openalea.
\(\rightarrow\) mtg.
\(\rightarrow m t g^{\circ}\)
\(\hookrightarrow\) import \(_{\bullet}\)
(continues on next page)

a) tree graph at internode scale b) multiscale tree graph (MTG)

Fig. 12: Figure 1: Graphical representation of the MTG file code_file2.mtg used as an input file to all examples contained in this page

(continued from previous page)

(continued from previous page)

(continued from previous page)

28

(continued from previous page)

34

35

37

38

(continued from previous page)
39

(continued from previous page)
46

48

49



8

51





都
\(\hookrightarrow \#_{\square}\)
\(\rightarrow\) U3 \(_{4}\)
\(\rightarrow\) main
\(\hookrightarrow\) axe
i,
\(\rightarrow C_{b}\)
\(\hookrightarrow={ }_{\square}\)
\(\hookrightarrow g\).
\(\hookrightarrow\) add_
\(\hookrightarrow\) child_
\(\rightarrow\) and_
\(\rightarrow\) complex (i,
\(\hookrightarrow\) label=
\(\rightarrow\) 'I16
\(\hookrightarrow^{\prime}\),
\(\hookrightarrow \sqcup\)
\(\hookrightarrow\) edge_
\(\hookrightarrow\) type \(=\)
\(\hookrightarrow '\)
\(\hookrightarrow<\)
\(\hookrightarrow '\),
\(\rightarrow \smile\)
\(\leftrightarrow\) Length=7.
\(\hookrightarrow 5\),
\(\hookrightarrow\)
\(\hookrightarrow\) diameter \(=\)
\(\rightarrow 9_{\text {ப }}\)
\(\hookrightarrow)\)
g.
\(\rightarrow\) node (c).
\(\rightarrow\) label \(=\)
\(\hookrightarrow\) 'U3
\(\hookrightarrow '\)
g.
\(\rightarrow\) node (c)
\(\hookrightarrow\) edge_
\(\rightarrow\) type \(=\)
\(\hookrightarrow\)
\(\rightarrow<\)
\(\hookrightarrow^{\prime}\)
i」
\(\hookrightarrow=\)
\(\rightarrow g\).
\(\rightarrow\) add_
\(\hookrightarrow\) child(i,
\(\hookrightarrow\) label=
\(\rightarrow\) 'I17
\(\hookrightarrow^{\prime}\),
\(\stackrel{\hookrightarrow}{\hookrightarrow} \stackrel{\text { edge__ }}{ }\)
\(\rightarrow\) type \(=\)
\(\rightarrow '\)
\(\hookrightarrow<\)
\(\hookrightarrow<\)
\(\hookrightarrow\)
\(\hookrightarrow\)
\(\hookrightarrow)\)
(continued from previous page)

57

```

\bullet
\hookrightarrow= -
\hookrightarrowadd_
child(i,
@label=
\hookrightarrow'I18
\hookrightarrow',
\hookrightarrow
๑edge_
๑ype=
\hookrightarrow'
\hookrightarrow
G'』
\hookrightarrow)
i
\hookrightarrow
G.
\hookrightarrowadd_
cchild(i,
@label=
@'I19
\hookrightarrow',
\hookrightarrow
\hookrightarrowedge_
type=
\hookrightarrow'
\hookrightarrow<
\hookrightarrow'ь
G)
\hookrightarrow\#fat_
@mtg(g)
print_
G
->is_
@valid()
print_
\rightarrow g
for_
->id_
\hookrightarrowin
G
\leftrightarrow vertices()
\bullet
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrowprint
๑g[id]
from
@openalea.
mtg.
\hookrightarrowiO_
\hookrightarrowmport

```
(continued from previous page)

print
    \(\rightarrow\) list (g.
    \(\hookrightarrow\) property_
    \(\rightarrow\) names ())
properties
    \(\rightarrow-\)
    \(\hookrightarrow[(p\),
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow\)
    \(\hookrightarrow\) 'REAL
    \(\hookrightarrow^{\prime}\) ) \(\sqcup\)
    \(\hookrightarrow\) for
    \(\rightarrow \mathrm{p}_{\text {匕 }}\)
    \(\rightarrow\) in
    \(\rightarrow g\).
    \(\rightarrow\) property_
    \(\hookrightarrow\) names()
    \(\hookrightarrow \mathbf{i f}_{\sqcup}\)
    \(\rightarrow \mathrm{P}_{\text {- }}\)
    \(\hookrightarrow\) not
    \(\hookrightarrow\) in
    \(\rightarrow\) [
    \(\hookrightarrow\) 'edge_
    \(\rightarrow\) type
    \(\hookrightarrow^{\prime}\),
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow\)
    \(\hookrightarrow\) 'index
print
    \(\leftrightarrows\) properties
mtg_
    \(\rightarrow\) lines
    \(\hookrightarrow=\)
    \(\rightarrow\) write_
    \(\hookrightarrow\) mtg (g,
    \(\rightarrow \bullet\)
    \(\leftrightarrow\) propertie
f
\(\hookrightarrow=\)
\(\rightarrow\) open (
\(\rightarrow\) 'test.
\(\rightarrow \mathrm{mtg}\)
\(\hookrightarrow '\),
\(\hookrightarrow \sqcup\)
-
\(\hookrightarrow\)

\(\hookrightarrow^{\prime}\) )
f.
\(\leftrightarrow\) write (mtg
\(\hookrightarrow\) lines)
f.
\(\rightarrow\) close ()

\section*{Authors}

Christophe
Pradal
<christophe
pradal
__at_
cirad
fr>,
Thomas
Coke-
laer
<thomas
coke-
laer
_at sophia
in-
ria
fr>
3.6 Plant
(3D
re-
con-
struc-
tion
of
plant
ar-
chi-
tec-
ture)
\begin{tabular}{|lll}
\hline Section \\
con- \\
tents
\end{tabular}
\begin{tabular}{|c|c|}
\hline series of examples. & \begin{tabular}{l}
the \\
Plant- \\
Frame \\
vo- \\
cab- \\
u- \\
lary \\
that \\
we \\
use \\
through- \\
out \\
vplants \\
and \\
give \\
a
\end{tabular} \\
\hline
\end{tabular}

\subsection*{3.6.1 The problem}
cal data is associated to some vertices of the architecture (aka MTG). But often, geometrical information is missing on some vertex. Constraints have to be solved to compute missing values.

Insert
a
scale
at
the
axis
level.
2.

Project
all
the
con-
straints
at
the
finer
scale.
3.

Apply
dif-
fer-
ent
Knowl-
edge
Sources
(i.e.

KS)
on
the
MTG
to
com-
pute
the
val-
ues
at
some
nodes.
4.

Solve
the
con-
straints.
5.

Visualise
the
ge-
om-

3.6.3 Visua
of
a
dig-
i-
tized
Tree

First,
we
load
the
dig-
i-
tized
Wal-
nut
noylum2.
mtg

\(\qquad\)
Then,
a
file
con-
tain-
ing
a
set
of
de-
fault
ge-
o-
met-
ric
pa-
ram-
e-
ters
is
loaded
to
build
a
DressingData (walnut.drf)
(
\[
\begin{aligned}
& > \\
& \rightarrow> \\
& \rightarrow> \\
& \stackrel{\square}{\bullet} \stackrel{\mathrm{d}}{\stackrel{\rightharpoonup}{2}} \\
& \rightarrow \text { drf } \\
& \hookrightarrow= \\
& \rightarrow \text { data/ } \\
& \leftrightarrow \\
& \hookrightarrow ' w a l n u t . \\
& \rightarrow \mathrm{drf} \\
& \rightarrow \text { ' } \\
& > \\
& \rightarrow> \\
& \begin{array}{l}
\rightarrow> \\
\rightarrow \\
\rightarrow
\end{array} \\
& \rightarrow \text { dressing_ } \\
& \rightarrow \text { data }{ }_{\square} \\
& \hookrightarrow= \\
& \hookrightarrow \text { dresser. } \\
& \rightarrow \text { dressing_ } \\
& \rightarrow \text { data_ } \\
& \rightarrow \text { from_ } \\
& \rightarrow f i l e(d r f)
\end{aligned}
\]

Another
so-
lu-
ب:
tion is to create
the default
pa-
ram-
e-
ters
di-
rectly
```

^

```

Geometric
pa-
ram-
e-
ters
are
miss-
ing.
How
to
com-
pute
them?
Use
the
Plant-
Frame,
a
ge-
o-
met-
ric
solver
work-

Create the solver
and solve the problem
 \(\leftrightarrow\) PlantFram
\(\stackrel{\bullet}{\hookrightarrow}\)
\(\stackrel{\bullet}{\bullet}\)
\(\rightarrow \sqcup\)
\(\leftrightarrows\)
\(\rightarrow \sqcup\)
\(\stackrel{\hookrightarrow}{\bullet}\)
\(\bullet \bullet\)
\(\bullet\)
\(\bullet\)
\(\leftrightarrow\)
\(\hookrightarrow\)
\(\rightarrow\)
\(\hookrightarrow\)
\(\rightarrow\)
\(\leftrightarrow\)
\(\stackrel{\bullet}{\bullet}\)
\(\hookrightarrow \sqcup\)
\(\bullet\)
\(\bullet\)
\(\bullet\)
\(\rightarrow \sqcup\)
\(\hookrightarrow\) TopDiamet
\(\rightarrow\) 'TopDia',
\(\qquad\)
Visualise
the

\(>\)
\(\rightarrow>\)
\(\rightarrow>\)
\(\rightarrow \sqcup\)
\(\rightarrow \mathrm{pf}\).
\(\rightarrow \mathrm{plot}\left(\mathrm{gC}=\mathrm{T}_{3}\right.\)



\(\qquad\)

(continued from previous page)
(continued from previous page)

(continues on next page)

The
mtg
monopo-
dial_plant.mtg is
loaded.
To
draw
it,
just
run:

just
\(>\)
\(\rightarrow>\)
\(\rightarrow>\)
\(\stackrel{\rightharpoonup}{\hookrightarrow} \stackrel{\text { pf }}{ }\)
\(\rightarrow=\)
\(\rightarrow\) plantframe
\(\rightarrow\) PlantFram
\(\rightarrow\)
\(\rightarrow\) TopDiamet
\(\leftrightarrow\) 'diam
\(\rightarrow\) ')
(continued from previous page)


count
the
di-
am-
e-
ter, we have to define a visitor function.
(continues on next page)
diam
\(\hookrightarrow={ }_{\square}\)
\(\hookrightarrow g\).
\(\rightarrow\) property \((\)
\(\hookrightarrow '\) diam
\(\hookrightarrow^{\prime}\) )
\(\operatorname{def}\)
\(\leftrightarrow\) visitor (g,
\(\hookrightarrow \bullet\)
\(\hookrightarrow \mathrm{V}\),
\(\hookrightarrow \sqcup\)
↔turtle):
\(-\)
\(\hookrightarrow \bullet\)
\(\hookrightarrow \bullet\)
\(\hookrightarrow-\)
\(\hookrightarrow g\).
\(\rightarrow\) edge_
\(\rightarrow\) type (v)
\(\hookrightarrow=={ }_{\bullet}\)
\(\hookrightarrow\)
\(\hookrightarrow^{\prime}+\)
\(\hookrightarrow^{\prime}\) :
-
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\rightarrow \bullet\)
\(\hookrightarrow \bullet\)
\(\hookrightarrow \bullet\)
\(\hookrightarrow\) angle
\(\hookrightarrow=\)
\(\hookrightarrow 90\)
\(\hookrightarrow\) if \(_{\dashv}\)
\(\hookrightarrow g\).
\(\hookrightarrow\) order (v)
\(\hookrightarrow==\)
\(\leftrightarrow 1^{\text {u }}\)
\(\hookrightarrow\) else
\(\hookrightarrow 30\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\leftrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \bullet\)
\(\hookrightarrow\) turtle.
\(\leftrightarrow\) down (angle
(continued from previous page)


\footnotetext{
-\(\hookrightarrow-\)
    \(\rightarrow+\)
    \(\rightarrow\) turtle.
    \(\hookrightarrow\) setId (v)
-
    \(\hookrightarrow\)
    \(\rightarrow\)
    \(\stackrel{\leftrightarrow}{\bullet}\)
    \(\leftrightarrow \mathrm{v}_{\mathrm{L}}\)
    \(\rightarrow \mathrm{in}_{\sqcup}\)
    \(\rightarrow\) diam:
-
    \(\leftrightarrow \sqcup\)
    \(\rightarrow \sqcup\)
    \(\stackrel{\bullet}{\bullet}\)
    \(\rightarrow \sqcup\)
    \(\rightarrow \sqcup\)
    \(\rightarrow \sqcup\)
    \(\rightarrow \sqcup\)
    \(\rightarrow\) turtle.
    \(\rightarrow\) setWidth (c
    \(\rightarrow 2\).
    \(\rightarrow)\)
\(-\)
    \(\hookrightarrow_{\square}\)
    \(\rightarrow \sqcup\)
    \(\rightarrow \sqcup\)
    \(\rightarrow\) turtle.
    \(\leftrightarrow \mathrm{F}(10)\)
-
    \(\rightarrow \sqcup\)
    \(\rightarrow \sqcup\)
    \(\leftrightarrow \sqcup\)
    \(\rightarrow\) turtle.
    \(\rightarrow\) rollL()
\(\mathrm{pf}_{\sqcup}\)
    \(\hookrightarrow=\)
    \(\leftrightarrow\) plant frame
    \(\rightarrow\) PlantFram
pf.
    \(\rightarrow\) plot ( g ,
    \(\rightarrow\) -
    \(\leftrightarrows\) visitor=v
}

\subsection*{3.7 Usinc MTG within \\ Vi- \\ suAlea}

Nodes have been im-plemented within VisuAlea


Fig. 13: MTG manipulation within VisuAlea

\subsection*{3.8 File syntax}

Todo: revise the entire document to check tabulation of the examples

\begin{tabular}{ll} 
& eral, \\
words \\
can \\
a
\end{tabular}
can be
located anywhere
in
the
UNIX
hi-
er-
achi-
cal
file
sys-
tem,
pro-
vided
the
user
can access them. All references to files from within a file or from AML must be given explicitly. References to files must always be made relatively to the location where the reference is made.

In
var-
i-
ous
files,
user-
defined
names
must
be
given
to
ob-
jects,
at-
tributes,
etc.
Un-
less
spec-
i-
fied
oth-
er-
wise, names always consist of strings of alphanumeric characters (including underscore '_') starting by a non-numeric character. A name may start by an underscore. Some names correspond to reserved keywords. Since reserved keywords always start in AMAPmod with uppercase letter, it is advised, though not mandatory, to define user-defined names starting with lowercase letter to avoid name collision.

\section*{Coding strategy}

A

\section*{plant}
mul-
ti-
scale
topol-
ogy
is
rep-
re-
sented
by
a
string
of
char-
ac-
ters
(see
3.2.2).

The string
is
made
up of a series of labels representing plant components (a label is made up of an alphabetic character in A-Z,a-z and a numeric index) and of symbols representing either the physical relationships between the components. Character ' \(/\) ' is used for decomposition relationship (see next paragraph), ' + ' is used for branching relationship and ' \(<\) ' for successor relationship. For example:


\footnotetext{
\(\rightarrow I 1\)
\(\rightarrow<\) I2
\(\rightarrow<\) I3
\(\hookrightarrow<I 4+I 5\)
\(\rightarrow<\) I6
}

I4,
I5,
I6.
I1
to
I4
are
a sequence of components defining an axis which bears a second axis made up of the sequence of components I5 and I6. In this string every component is connected with at most one subsequent component (either by a ' \(<\) ' or by a ' + ')

\section*{cate-}
nat-
ing
the
con-
secutive entity labels encountered while moving along the plant structure from the plant basis to the considered entity. For example, consider the decomposition of a plant in terms of axes. Assume this plant is made of 3 axes: axis A1 bears axis A2, which itself bears axis A3. Then, the respective names of the axes are:
\(\square\)
```

/
A1
/
A1+A2
/
A1+A2+A3

```

Symbol
'+'
refers
to
the
type
of
con-
nec-
tion
be-
tween
A1
and
A2,
A2
and
A3
re-
spec-
tively.
Now,
con-
sider
another plant considered at the scale of growth units. A growth unit U90 bears a growth unit U91 which is itself followed on the same axis by U92. The respective names of these growth units are


\footnotetext{
/
\(\hookrightarrow \mathrm{U} 90\)
/
\(\hookrightarrow U 90+U 91\)
/
\(\hookrightarrow \mathrm{U} 90+\mathrm{U} 91\)
\(\hookrightarrow<\mathrm{U} 92\)
}

These
two
ex-
am-
ples
il-
lus-
trate
how
to
de-
fine
the
name
of
plant
en-
ti-
ties
when
only
one
scale
of
description is considered. When several scales are considered, this strategy can be extended as explained in section 3.2.2.

Assume
for
in-
stance
that
axis
A1
of
the
pre-
vi-
ous
ex-
am-
ple
is
com-
posed
of
3
con-
sec-
u-
tive
growth units and that axis A2 is borne by the second growth units of A1. Then the name of A2 is defined as
\(\square\)

\section*{Relative names}

Every
name
of
an
en-
tity
is
thus
the
con-
cate-
na-
tion
of
a
se-
ries
of
pairs
(re-
la-
tion
sym-
: name = relation label relation label relation label relation. . label relation label \(\quad\) bol,label
ries of pairs (relation label). According to the recursive construction of entity names, this prefix defines the name of an entity \(y\) on the path from the plant basis to the entity with name \(n\). The name of \(x\) has thus the form:

\(\mathrm{n}_{\square}\)
\(\hookrightarrow=\)
\(\hookrightarrow D^{-}\)
\(\leftrightarrow \mathrm{m}\)
where
m
is
a
se-
ries
la-
bel
re-
la-
tion
...
la-
bel
re-
la-
tion.
En-
tity
X
has
ab-
solute
name \(n\). Alternatively we can say that \(x\) has relative name \(m\) with respect position \(p\), i.e. relatively to entity \(y\).


\section*{Coding files}

The coding of a plan
-
a
header
which
con-
    ters,
the
code
of
the
plant
ar-
chi-
tec-
ture.
The header contains
-
the
set
of
all
en-
tity
classes
used
in
the MTG
de-
scrip-
tion,
-
a
de-
tailed
de-
scrip-
tion
of
the
topo-
log-
i-
quently, a MTG coding file should be edited using a spreadsheet editor. If a sharp '\#' is inserted on a line, every character until the next TAB on the same line is considered as a comment and is not interpreted.

\section*{Header}

General
pa-ram-
e-
ter
sec-
tion
For
his-
tor-
i-
cal
rea-
sons,
two
forms
of
plant
ar-
chi-
tec-
ture
cod-
ing
have
been
de-
vel-
oped,
de-
noted
FORM-A et FORM-B. FORM-A is the most general and should be employed. FORM-B is available for ascendant compatibility with former coding forms employed in the AMAP laboratory [Rey et al, 97]. Whatever the coding form used the plant built by AMAPmod is the same. The form of the coding language must be specified in the coding file by specifying either FORM-A or FORM-B following the keyword CODE, in the next column, for example : CODE: FORM-A This definition is mandatory.

\section*{Class}
def-
i-
ni-
tion
sec-
tion
Classes
must
then
be
de-
clared.
This

\section*{is}

\section*{done}
in
a
sec-
tion
be-
gin-
ning
with
key-
word
CLASSES.
Then
a
line
is
defined for each class of the MTG. The first column, entitled SYMBOL, contains the symbolic character denoting a class used in the MTG. This symbol most be an alphabetic character (either upper or lower-case letter). Two classes either at identical or different scales must have different symbolic characters. The second column, entitled SCALE, represents the scale at which this class appears in the MTG. There are no a priori limitation related to the number of classes, however, these must be consecutive integer greater or equal to 0 . Scale \(i, i>1\), can only appear if scale \(i-1\) has appeared before.
\(\square\)
(continued from previous page)


Symbol
rep-
re-
sent
the
en-
tire
database
and
is
defined
by
def-
i-
ni-
tion
at
scale
0.

Key-
word
DE-
COMPOSITION defines the types of decomposition that can have a vertex (i.e. a plant constituent) : CONNECTED, LINEAR, <-LINEAR, +-LINEAR, FREE, NONE. Key word CONNECTED means that the decomposition graph of a vertex at the next scale is connected. Keyword LINEAR means that the decomposition graph of a vertex at the next scale is a linear sequence of vertices. Besides, if this all the constituents of this sequence are connected using a single type of edge (respectively \(<\) or + ), then keyword <-LINEAR et +-LINEAR can respectively be used. Keyword FREE allows any type of decomposition structure while keyword NONE, specifies that the components of a unit must not be decomposed. Column INDEXATION is not used. Column DEFINITION must be filled with value EXPLICIT if any entity of that class has feature values (i.e. attributes). IMPLICIT should be used otherwise.

\begin{abstract}
fines for a pair of classes at the same scale one allowed type of connection. It contains 4 columns, LEFT, RIGHT, RELTYPE, and MAX. For any class in column LEFT, the column RIGHT defines a list of class (appearing at the same scale) which can be connected to it using a connection of type RELTYPE. The maximum number of connections of type RELTYPE that can be made on an entity from column is defined in column MAX. If column MAX contains a question mark '?', the number of connections is not bounded. If a class does not appear in the column LEFT, then entities of this class cannot be connected to other entities in the MTG.
\end{abstract}
word
DE-
SCRIP-
TION.
Here,
each
line
de-



P does not appear in the left column, a P cannot be connected to any other entity at scale 1, e.g. to any other P. Entities of type \(U\) can be connected to entities of either type \(I\) or \(U\), for any of the connection types \(<\) et + . An entity of type U can be connected by relation + to any number of Us or Is. However, they can only be connected by relation < to at most one entity of either type U or I. Entities of type I cannot be connected by relation < to any type of entity, while they can be connected to other I's by relation +. At scale 3, any E can be connected to only one other E by either relation + or \(<\). This section is mandatory but can contain no topology description.
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
\(\xrightarrow{\bullet}\)
\[
\begin{aligned}
& \rightarrow \\
& \leftrightarrow \\
& \leftrightarrow \\
& E_{\bullet}
\end{aligned}
\] \\
\(\rightarrow\) - \\
\(\rightarrow\) \\
\(\rightarrow+\) + \\
\(\rightarrow\) \\
\(\rightarrow\) \\
\(\rightarrow 1\)
\end{tabular}} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Let us re-

\section*{sume me}

\section*{on}

\section*{the}

\section*{ex-}

\section*{am-}

\section*{ple}

\section*{from}

\section*{the}
above
CLASS
sec-

\section*{tion}
with
its
DE-
SCRIP-
TION
sec-
tion.
Since
class
t
\(\qquad\)
-
ove
ith
E-
n.

\section*{Attribute}
sec-
tion
The
third
and
last
part
of
the
header
\begin{tabular}{ll} 
& \\
\hline
\end{tabular}
```

TopDiameter
REAL
geom
\hookrightarrow
\hookrightarrow
\hookrightarrow
GGEOMETRY
\hookrightarrow
\hookrightarrow
\hookrightarrow
geom1.
Geom
appear
\hookrightarrow
APPEARANCE
\hookrightarrow
material.
app

```

Certain

\section*{names}
of
at-
tributes
are
re-
served
key-
words.
They
all
start
by
an
upper-
case
let-
ter.
If
they
ap-
pear
in
the feature list, they must be in the same order as in the following description. Alias, of type STRING (formerly ALPHA), must come first if used. It allows the user to define aliases for plant entities to simplify some code strings. Date, is used to define the observation date of an entity. NbEl (NumBer of ELements), defines the number of components on any entity at the next scale. Length is the length of an entity. BottomDiameter et TopDiameter respectively define the bottom and top stretching values of a tapered transformed that is applied to the geometric symbol representing this entity (for branch segments associated with cylinder as a basic geometrc model, this defines cone frustums). State of type STRING defines the state of an entity at the time of observation. This state can be D (Dead), A (Alive), B (Broken), P (Pruned), G (Growing), V (Vegetative), R (Resting), C (Completed), M (Modified). These letters can be combined to form a string of characters, provided they consistent with one another. Such state descriptions are checked during the parsing of the MTG and possible inconsistencies are detected.
sec-
tion is
manda-
tory
but
can
con-
tain
no
features.

\section*{Coding section}

The
sec-
tion
con-
tain-
ing
the
code
of
a
MTG
starts
by
key-
word
MTG.
The
next
line
con-
tains
a
list
of
col-
umn
names.
In
the
first
col-
umn, the keyword
TOPO
in-
di-
cates
that
this column and the next unlabelled column are reserved for the topological code. On the same line, all the names that appear in the FEATURE section of the header must appear, in the same order, one column after the other, starting with the first feature name in a column sufficiently far from the TOPO column to leave enough space for the topological code (see examples below).

The
topo-
log-
i-
cal
code must
nec-
es-
sar-
ily
start
by
a
'/'
like
in:
\[
\begin{aligned}
& / \\
& \hookrightarrow \mathrm{P} 1 / \\
& \hookrightarrow \mathrm{A} 1 \\
& \hookrightarrow \\
& \hookrightarrow \\
& \hookrightarrow
\end{aligned}
\]

It
can
spread
on
all
the
columns
be-
fore
the
first
fea-
ture
col-
umn.
Since
en-
tity
names
have
a
nested

\begin{abstract}
However, if one wants to declare feature values attached to some entity, the plant code must be interrupted after the label of this entity, attributes must be entered on the same line in corresponding columns, and the plant code must continue at the next line.
\end{abstract}
def-
i-
ni-
tion, a
plant
de-
scrip-
tion
can
be
made
on
a
a
gle
line.
der-
i-
crip-
n
n ade
on


Note
that
in
the
cur-
rent
im-
ple-
men-
ta-
tion
of
the
parser,
an
en-
tity
which
has no
fea-
tures
uses
ob-
viously 0 bytes of memory for recording features, however, assuming that the total number of features is F , if an entity has at least one feature value defined, it uses a constant space \(\mathrm{F}^{*} 14\) bytes to record its feature (whatever the actual number of features defined for this entity).

\section*{Example}

Here
\begin{tabular}{ll} 
& am- \\
ple \\
of \\
a
\end{tabular}

1:

(continued from previous page)

(continued from previous page)



In
this
ex-am-
ple,
cer-
tain
names
use
fre-
quently
the
same
pre-
fix
which
can
be
long
(this
bit
of
code
con-
tains 225 characters). We are going to introduce successively different strategies in order to simplify this first coding scheme.

quently in the name of others.

\(\rightarrow \#\),
\(\hookrightarrow\) before
\(\rightarrow\) the \(_{5}\)
\(\rightarrow\) header
\(\rightarrow\) is \(_{\square}\)
↔identical
\(\rightarrow\) to
\(\rightarrow\) the \(_{\square}\)
\(\rightarrow\) previous \(_{\square}\)
\(\rightarrow\) one
FEATURES:
NAME \(_{-}\)
\(\rightarrow \bullet\)
\(\hookrightarrow\)
\(\hookrightarrow \sqcup\)
\(\leftrightarrows\) TYPE
(continued from previous page)
\begin{tabular}{|c|c|c|}
\hline & (continued from previous page) & \\
\hline & & \(A^{\text {Alias }}\) \\
\hline & & \(\stackrel{\rightharpoonup}{\bullet}\) \\
\hline & & \(\stackrel{-}{\bullet} \stackrel{\text { ALPHA }}{ }\) \\
\hline & & MTG : \\
\hline & & TOPO \\
\hline & & \(\hookrightarrow_{\bullet}\) \\
\hline & & \(\stackrel{\rightharpoonup}{\bullet}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow\) Alias \\
\hline & & \\
\hline & & \(\rightarrow \mathrm{P} 1 /\) \\
\hline & & \(\hookrightarrow \mathrm{A} 1_{\sqcup}\) \\
\hline & & \(\hookrightarrow\) \\
\hline & & \(\rightarrow\) A1 \\
\hline & & (A1) / \\
\hline & & \(\rightarrow \mathrm{U1}\) \\
\hline & & \(\rightarrow<\mathrm{U} 2+\mathrm{S} 1_{\bullet}\) \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\rightarrow\) Branch1 \\
\hline & & (A1) / \\
\hline & & \(\rightarrow \mathrm{U1}\) \\
\hline & & \(\rightarrow<\mathrm{U} 2+\mathrm{S} 2\) \\
\hline & & (A1) / \\
\hline & & \(\rightarrow\) U1 \\
\hline & & \(\rightarrow<\mathrm{U} 2+\mathrm{A} 1\) \\
\hline & & (A1) / \\
\hline & & \(\rightarrow \mathrm{U1}\) \\
\hline & & \(\rightarrow<\mathrm{U} 2+\mathrm{A} 1 /\) \\
\hline & & \(\rightarrow\) U1 \\
\hline & & \(\hookrightarrow<\mathrm{U} 2+\mathrm{S} 1\) \\
\hline & & (A1) / \\
\hline & & \(\rightarrow\) U1 \\
\hline & & \(\rightarrow<\mathrm{U} 2\) \\
\hline & & \(\rightarrow<\mathrm{U} 3+\mathrm{S} 1\) \\
\hline & & (A1) / \\
\hline & & \(\rightarrow\) U1 \\
\hline & & \(\rightarrow<\mathrm{U} 2\) \\
\hline & & \(\rightarrow<\mathrm{U} 3+\mathrm{A} 2_{\sqcup}\) \\
\hline & & \(\hookrightarrow\) \\
\hline & & \(\stackrel{\rightharpoonup}{\bullet}\) \\
\hline & & \(\stackrel{\rightharpoonup}{\bullet}\) \\
\hline & & \(\rightarrow\) A2 \\
\hline & & (A2) / \\
\hline & & \(\rightarrow\) U1 \\
\hline & & \(\rightarrow<\mathrm{U} 2\) \\
\hline & & \(\rightarrow<\mathrm{U} 3+\mathrm{A} 3\) \\
\hline & & (A2) / \\
\hline & & \(\rightarrow\) U1 \\
\hline & & \(\rightarrow<\mathrm{U} 2\) \\
\hline & & \(\rightarrow<\mathrm{U} 3+\mathrm{A} 3 /\) \\
\hline & & \(\rightarrow \mathrm{U1+S1} 1_{\sqcup}\) \\
\hline & & \\
\hline & & \(\rightarrow\) Branch2 \\
\hline & & (A2) / \\
\hline & & \(\rightarrow\) U1 \\
\hline & (continues on next page) & \(\hookrightarrow<\mathrm{U} 2\) \\
\hline & & \(\rightarrow<\) U3 \\
\hline 168 & er 3. MTG User Guide & \(\rightarrow<\mathrm{U} 4\) \\
\hline
\end{tabular}

\(/\)
\(\hookrightarrow \mathrm{P} 1 /\)
\(\hookrightarrow \mathrm{A} 1 /\)
\(\hookrightarrow \mathrm{U} 1\)
\(\rightarrow<\mathrm{U} 2\)
\(\hookrightarrow<\mathrm{U} 3\)
\(\rightarrow<\mathrm{U} 4\)

An alias
can
be
as-
so-
ci-
ated
with
a
given
en-
tity
by
defin-
ing
its
name
in
col-
umn
Alias.
This
name
can then be reused in the topological section by enclosing it between parentheses. If an alias is used as a prefix of an entity, the code of this entity must be given relatively to this alias. For entity A2, for instance, we can see that its name is \(/ \mathrm{U} 1<\mathrm{U} 2<\mathrm{U} 3+\mathrm{A} 2\) relatively to position A 1 which is an alias for \(/ \mathrm{P} 1 / \mathrm{A} 1\). The absolute name of A 2 is thus, \(/ \mathrm{P} 1 / \mathrm{A} 1 / \mathrm{U} 1<\mathrm{U} 2<\mathrm{U} 3+\mathrm{A} 2\). The code part of this file has now a size of 173 characters, i.e. \(78 \%\) of the initial code.

The
of codes. Assume that entity y has a code of the form XY where X represents the code of some entity x. For example X is \(/ \mathrm{P} 1 / \mathrm{A} 1\) and Y is \(/ \mathrm{U} 1<\mathrm{U} 2<\mathrm{U} 3+\mathrm{A} 2\) in the previous example. If X already appears in column of the topological section, then we may consider that if subsequently \(Y\) appears at a different line, but shifted to the right by one column, then Y is actually follows X which is thus its prefix. Then Y is a relative name with respect to position X . In our example, this leads to
\(\square\)
\(\rightarrow \sqcup\)
\(\hookrightarrow\)
\(\hookrightarrow\)

\(\rightarrow\) code \(_{\text {匕 }}\)
\(\rightarrow O f_{\sqcup}\)
\(\rightarrow X\)
\(/\)
\(\hookrightarrow \mathrm{P} 1 /\)
\(\rightarrow\) A1/
\(\leftrightarrow \mathrm{U} 1\)
\(\hookrightarrow<\mathrm{U} 2\)
\(\hookrightarrow<U 3+A 2\)
\(\rightarrow \sqcup\)
\(\hookrightarrow\)
\(\hookrightarrow \#\)
\(\rightarrow\) code \(_{5}\)
\(\rightarrow O f_{\sqcup}\)
\(\rightarrow Y\)
which
be-
comes
```

↔\# Column1_
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrow
@ Column2
/
@ 1/
A1]
\hookrightarrow
\hookrightarrow
\hookrightarrow-
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrow
\leftrightarrow\#
\hookrightarrowcode
Gde

```
\(\rightarrow X\)
(continued from previous page)


The
fact
that
the
code
of
in-
ter-
pret
the continuation of \(/ \mathrm{P} 1 / \mathrm{A} 1\) leading to the absolute name \(/ \mathrm{P} 1 / \mathrm{A} 1 / \mathrm{U} 1<\mathrm{U} 2<\mathrm{U} 3+\mathrm{A} 2\) which is actually the code of y .
By
ap-
ply-
ing
this

(continued from previous page)

(continued from previous page)

\begin{tabular}{l} 
Now \\
the \\
num- \\
ber \\
of \\
char- \\
ac- \\
ters \\
used \\
in \\
the \\
code \\
is \\
now \\
63 \\
and \\
cor- \\
re- \\
sponds \\
to \\
\(28 \%\) \\
of
\end{tabular}
the ini-
tial code. However, this compressed code raises two new problems. The first problem is that the number of columns necessary has greatly increased. The second is that it is difficult to recognise the structural organisation of the plant in the way the code displays it.

To
address both problem, a
new
syn-
tac-
tic
no-
ta-
tion
is
in-
tro-
duced.
Each time
a
rel-
a-
tive
code starts with character \({ }^{\wedge}\) in a given cell, the current relative code must be interpreted with respect to the position whose code is the latest code defined in the same column just above the current cell. Using the \({ }^{\wedge}\) notation:

(continued from previous page)
(continued from previous page)
\[
\begin{aligned}
& \hookrightarrow \\
& \hookrightarrow<\mathrm{U} 3 \\
& - \\
& \hookrightarrow \sqcup \\
& \hookrightarrow \sqcup \\
& \hookrightarrow \sqcup \\
& \hookrightarrow+\text { A2 / } \\
& \hookrightarrow \mathrm{U} 1 \\
& \hookrightarrow<\mathrm{U} 2 \\
& \hookrightarrow<\mathrm{U} 3 \\
& \text { - } \\
& \hookrightarrow \sqcup \\
& \rightarrow \sqcup \\
& \hookrightarrow \sqcup \\
& \rightarrow \sqcup \\
& \hookrightarrow \sqcup \\
& \hookrightarrow \sqcup \\
& \hookrightarrow \sqcup \\
& \hookrightarrow+\text { A3 / } \\
& \hookrightarrow \mathrm{U} 1+\mathrm{S} 1 \\
& - \\
& \hookrightarrow \\
& \hookrightarrow \sqcup \\
& \hookrightarrow- \\
& \hookrightarrow^{\wedge} \\
& \hookrightarrow<\mathrm{U} 4 \\
& \wedge \quad
\end{aligned}
\]

\section*{Here} the number of columns used is equal to the number of orders in the plant (i.e. \(3)\),
which bounds
the
total number of columns required and best reflects in the code the botanical structure of the plant. Entities of order i are defined in column i which greatly improves the code leagibility. Finaly, the number of characters used is 69 , i.e. \(31 \%\) of the initial extended code.


Such
a
line
can
be
ab-
bre-
vi-
ated
by
us-
ing
the
<<
sign

is
de-
fined
sim-
i-
larly:
U87++U93
is
a
short-
hand
for
U87+U89+U90

Note
that
in
such
cases,
the
en-
ti-
ties
im-
plic-
itly
de-
fined
can-
not
have
at-
tributes:
for
in-
stance,
the
(
code:
TOPO
\(\rightarrow \sqcup\)
\(\rightarrow \sqcup\)
\(\rightarrow \sqcup\)
\(\rightarrow \mathrm{diam}_{\lrcorner}\)
\(\rightarrow\) -
\(\rightarrow \sqcup\)
\(\rightarrow \sqcup\)
\(\rightarrow\) flowers
1
\(\rightarrow \mathrm{A} 1 /\)
\(\hookrightarrow\) U87
\(\hookrightarrow<\)
\(\rightarrow<\) U93
\(\hookrightarrow\)
\(\rightarrow \sqcup\)
\(\rightarrow\)
\(\rightarrow 10\).
\(\rightarrow 3_{\bullet}\)
\(\rightarrow \sqcup\)
\(\rightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\rightarrow 2\)

Means
that
an
axis
A1
is
made
of
a
se-
ries
of 7
growth
units,
la-
belled
from
U87
to
U93
and
that
U93
has a diameter of 10.3 and bears 2 flowers. In some cases, we want to express that the attributes are shared by all entities. This can be expressed as follows:
\begin{tabular}{|cc|}
\hline
\end{tabular}


(continued from previous page)

(continued from previous page)

(continued from previous page)
\(\square\)
\begin{tabular}{|c|}
\hline \(\stackrel{\square}{\square}\) \\
\hline \(\rightarrow\) \\
\hline \(\rightarrow+\) \\
\hline \(\rightarrow\) - \\
\hline \(\stackrel{\rightharpoonup}{\bullet}\) \\
\hline \(\stackrel{\checkmark}{\bullet}\) \\
\hline \[
\begin{aligned}
& \hookrightarrow_{\bullet} \\
& \rightarrow+\mathrm{A} 3 /
\end{aligned}
\] \\
\hline \(\rightarrow\) U1+SI \\
\hline - \\
\hline \(\rightarrow \sqcup\) \\
\hline \(\checkmark \sqcup\) \\
\hline \(\rightarrow\) \\
\hline \(\leftrightarrow\) \\
\hline \(\rightarrow<\mathrm{U} 4\) \\
\hline \\
\hline \[
\rightarrow<\mathrm{U} 4
\] \\
\hline
\end{tabular}

\section*{Examples of coding strategies in different classical situations}

Non linear growth units

Until
now
we
have
only
used
lin-
ear
growth
units,
i.e.
en-
ti-
ties
whose
de-
com-
po-
si-
tion
in
a
lin-
ear
set of entities. It is possible to define branching growth-units, which are not a part of an axis. The plant illustrated in Figure 4-2 illustrates such non-linear entities.

(continued from previous page)

(continued from previous page)


\footnotetext{
MTG:
/
    \(\rightarrow F 1 /\)
    \(\hookrightarrow \mathrm{U} 1\)
    \(\hookrightarrow<\mathrm{U} 2\)
-
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow \sqcup\)
    \(\leftrightarrow+\) U3
    \(\leftrightarrow<\mathrm{U} 4\)
    \(\rightarrow<\mathrm{F} 2 /\)
    \(\hookrightarrow\) U1
-
    \(\hookrightarrow \sqcup\)
    \(\rightarrow \sqcup\)
    \(\hookrightarrow \sqcup\)
    \(\leftrightarrow \sqcup\)
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
    \(\hookrightarrow\)
\(\hookrightarrow\)
\(\hookrightarrow\)
    \(\hookrightarrow+\mathrm{U} 2\)
-
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow \bullet\)
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow\)
\(\hookrightarrow\)
\(\hookrightarrow\)
    \(\hookrightarrow\)
\(\hookrightarrow\)
\(\hookrightarrow\)
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow+\) U3
\(-\)
    \(\hookrightarrow \sqcup\)
    \(\hookrightarrow \sqcup\)
    \(\leftrightarrow \sqcup\)
    \(\leftrightarrow+\mathrm{U} 5+\mathrm{F} 3 /\)
    \(\leftrightarrow \mathrm{U} 1\)
}

Sympodial plants

Sympodial plants of-
ten
con-
tain
ap-
par-
ent
axes
made
up
of
se-
ries
of
mod-
ules
(or
axes).
At
a
macro-
scopic
scale, the plant is described in terms of apparent axes connected to one another (Figure 4-3) depict a typical sympodial plant:

(continues on next page)

CODE:
\(\hookrightarrow\)
\(\hookrightarrow\)
\(\rightarrow\) जORM-
\(\rightarrow A\)
CLASSES:
SYMBOL \(_{\text {- }}\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow\) SCALE
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow\) DECOMPOSI
\(\rightarrow\) \(\rightarrow\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow\) INDEXATIOI
\(\hookrightarrow \sqcup\)
\(\leftrightarrow \mathrm{D}\)
\(\rightarrow\) DEFINITIOI
\(\hookrightarrow \$\)
\(\hookrightarrow \sqcup\)
\(\stackrel{\hookrightarrow}{\hookrightarrow}\)
\(\hookrightarrow 0\)
\(\rightarrow \sqcup\)
\(\hookrightarrow\)
\(\rightarrow \stackrel{\rightharpoonup}{\text { PREE }_{\bullet}}\)

\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\leftrightarrow\) FREE \(_{5}\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow\) IMPLICIT
S \(\quad\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow \sqcup\)
\(\hookrightarrow 1_{ே}\)
\(\xrightarrow[\hookrightarrow]{\rightarrow}\)
\(\hookrightarrow \sqcup\)
\(\rightarrow+-\)
\(\hookrightarrow\) LINEAR
\(\hookrightarrow \sqcup\)
\(\hookrightarrow-\)
\(\rightarrow-\)
\(\hookrightarrow\) FREE \(_{\square}\)
(continued from previous page)

(continued from previous page)


Note
in
this
ex-

\section*{am-}
ple
the role
of
\(\wedge\)
which
enables
us
to
pre-
serve
the
struc-
ture
of
the
plant
into
the code itself. Indeed, apparent axes appear in columns corresponding to their apparent order.

\section*{Dominant axes}

Similarly,
dom-
i-
nant
axes
in
a
plant
can
be
iden-
ti-
fied
us-
ing macro-
scopic
units
Fig-
ure
4-
4
il-
lus-
trates how to code dominant axes:

(continued from previous page)



Whorls and supra-numerary buds

Whorls
and
supranumerary buds
can be
encoded in
sev-
eral
ways.
One
pos-
si-
ble
so-
lu-
tion
is
to
use
the
multiscale property a a MTG as illustrated in the following example.

(continued from previous page)

(continued from previous page)

(continued from previous page)

(continued from previous page)

\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{} & \\
\hline & \begin{tabular}{l}
Entities \\
E \\
de- \\
note \\
in- \\
tern- \\
odes. \\
Each \\
in- \\
tern- \\
ode \\
con- \\
tains \\
a \\
whorl, \\
whose \\
el- \\
e- \\
ments \\
are \\
de- \\
noted \\
by \\
class
\end{tabular} \\
\hline growth unit (class U) can be described. Note that within a whorl E, V positions are not connected to one another hey are simply considered as one part of the whorl. This is also true for supra-numerary positions. & \\
\hline
\end{tabular}

\section*{Plant growth observation}

Plant
growth
can
be
ob-
served
and
de-
scribed
us-
ing
MTGs.
To
this
end,
ob-
ser-
va-
tion
dates
are
recorded.
If
some
entity is observed at several dates, the new values of its attributes at different dates are recorded on consecutive lines where the topological code of the entity is not repeated but rather replaced by a star symbol '*'.

(continued from previous page)

(continued from previous page)


(continued from previous page)


Branching
units located
on
the bearer
ac-cord-
ing their height from the
ba-
sis
In
some
cases,
it
is
use-
ful
to
use
the
in-
dex
of
an
en-
tity
la-
bel
to
record
in-
for-
ma-
tion.
Here, the index of the entity is used to denote the position of an element is used to record the height of this position with respect to the basis of the corresponding axis.

\[
\begin{aligned}
& \text { (continued from previous page) }
\end{aligned}
\]
(continued from previous page)
```

(A91)
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrow\#
\hookrightarrowBack
\hookrightarrowto!
@axis
@borne
->at
\hookrightarrowposition
4100
\bullet
\hookrightarrow
\hookrightarrow
G
410+X92
\hookrightarrow
\hookrightarrow
G
\hookrightarrow/
L25+X92
\bullet
\hookrightarrow
\hookrightarrow
\hookrightarrow
\hookrightarrow\bullet
\hookrightarrow.
\hookrightarrow
\hookrightarrow

```

Description of a plant from the extremities

On
some
plants,
it
is
eas-
ier
to
de-
scribed branches
start-
ing
from
the
bud
of
the
stem
on
pro-
ceed-
ing
down-
ward to the stem basis. This is the case for instance, for large trees where biological markers of growth, nodes, growth unit limits, sympodial module, etc., are more leagible near the branch extremities. Here follows a strategy to code the plant in such a case.
\(\square\)
(continued from previous page)

(continued from previous page)


(continued from previous page)



\section*{The}
en-
ti-
ties
of
the
stem
must
be
or-
dered in the
file bottom-
up
(cf.
the
firt
col-
umn
where
growth


U have increasing indexes). However, the positions within a given growth unit is given from top down to the basis of this growth unit. In addition, if the user wants to enter the stem entities (here growth units) from the top down to the basis of the stem, (s)he can use a laptop computer and insert new growth units (say U90) before the ones already observed at the top (say U91).
ing a
FORM-
B
code.
Us-
ing
this
more
spe-
cific
code
al-
lows
you to enter the entities of the stem from top to basis (see first column).

(continued from previous page)
\begin{tabular}{|c|c|c|}
\hline & (continued from previous page) & \\
\hline & & U \\
\hline & & \(\leftrightarrow\) \\
\hline & & \(\leftrightarrow\) \\
\hline & & \(\rightarrow\) ¢ \(^{\text {¢ }}\) \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\hookrightarrow\) \\
\hline & & \(\hookrightarrow\) \\
\hline & & \(\hookrightarrow<-\) \\
\hline & & \(\rightarrow\) LINEAR \(_{\bullet}\) \\
\hline & & \(\hookrightarrow\) ¢ \\
\hline & & \(\hookrightarrow\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow \mathrm{FREE}_{\bullet}\) \\
\hline & & \(\hookrightarrow\) ப \\
\hline & & \(\hookrightarrow\) ப \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\hookrightarrow\) EXPLICIT \\
\hline & & \(\mathrm{E}_{\sqcup}\) \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\checkmark\) \\
\hline & & \(\rightarrow\) ¢ \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\rightarrow\) \\
\hline & & NONE \\
\hline & & \(\rightarrow\) ↔ \\
\hline & & \(\stackrel{\bullet}{\bullet}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow \mathrm{FREE}_{\llcorner }\) \\
\hline & & \(\checkmark\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\leftrightarrow\) EXPLICIT \\
\hline & & DESCRIPTION \\
\hline & & LEFT \\
\hline & & \(\hookrightarrow\) Ь \\
\hline & & \(\rightarrow\) ப \\
\hline & & \(\checkmark\) \\
\hline & & \(\rightarrow \mathrm{RIGHT}_{\bullet}\) \\
\hline & & \(\bullet\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow\) RELTYPE \\
\hline & & \(\rightarrow\) MAX \\
\hline & & \(\mathrm{U}_{\bullet}\) \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\hookrightarrow \mathrm{U}_{\text {- }}\) \\
\hline & & \(\hookrightarrow\) \\
\hline & & \(\hookrightarrow\) \\
\hline & & \(\rightarrow+{ }_{\square}\) \\
\hline & & \(\hookrightarrow\) ¢ \\
\hline & & \(\hookrightarrow\) ப \\
\hline & & \(\hookrightarrow\) ? \\
\hline & & \(\leftrightarrow\) \\
\hline & & \(\mathrm{U}_{\sqcup}\) \\
\hline & & \(\hookrightarrow\) ¢ \\
\hline & & \(\rightarrow\) \\
\hline & & \(\leftrightarrow \mathrm{U}_{\text {¢ }}\) \\
\hline & (continues on next page) & \(\hookrightarrow\) \\
\hline & & - \\
\hline 3.8. File syntax & 215 & \\
\hline 3.8. Fle syntax & & \(\checkmark\) \\
\hline & & \(\hookrightarrow\) ๑ \\
\hline & & \(\rightarrow\) \\
\hline & & \(\hookrightarrow 1\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{(continued from previous page)} & \\
\hline & & E \\
\hline & & \(\stackrel{\rightharpoonup}{\bullet}\) \\
\hline & & \(\stackrel{\bullet}{\bullet}\) \\
\hline & & \(\rightarrow \mathrm{E}_{\text {匕 }}\) \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\stackrel{\rightharpoonup}{\bullet}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\hookrightarrow<^{\circ}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow \sqcup\) \\
\hline & & \(\rightarrow 1\) \\
\hline & & \(\mathrm{E}_{\square}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\checkmark \sqcup\) \\
\hline & & \(\rightarrow \mathrm{E}_{\mathrm{U}}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow \sqcup\) \\
\hline & & \(\rightarrow+\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow \sqcup\) \\
\hline & & \(\rightarrow 1\) \\
\hline & & FEATURES: \\
\hline & & NAME \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow\) - \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow\) TYPE \\
\hline & & MTG: \\
\hline & & TOPO \\
\hline & & \\
\hline & & \(\rightarrow \mathrm{P} 1\) \\
\hline & & \\
\hline & & \(\hookrightarrow /\) \\
\hline & & \(\rightarrow\) U91 \\
\hline & & \\
\hline & & \(\rightarrow\) \\
\hline & & \(\stackrel{\rightharpoonup}{\bullet}\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow\) / \\
\hline & & \(\rightarrow E 2+U 92_{\bullet}\) \\
\hline & & \\
\hline & & ↔\#」 \\
\hline & & \(\rightarrow \mathrm{nd}_{\lrcorner}\) \\
\hline & & \(\rightarrow\) internode \\
\hline & & \(\rightarrow\) from \\
\hline & & \(\rightarrow\) the \\
\hline & & \(\rightarrow\) apex \(_{\text {U }}\) \\
\hline & & \(\rightarrow\) U91 \\
\hline & & \\
\hline & & \(\rightarrow\) \\
\hline & & \(\rightarrow\) \\
\hline & & \(\bullet \bullet\) \\
\hline & & \(\rightarrow\) / \\
\hline & & \(\rightarrow\) E3+U92 \\
\hline & & \\
\hline & & \(\stackrel{\#}{\text { \# }}\) \\
\hline & & \(\hookrightarrow 3 \mathrm{rd}_{\lrcorner}\) \\
\hline & (continues on next page) & \(\rightarrow\) internode \\
\hline & & \(\rightarrow \mathrm{from}_{\bullet}\) \\
\hline 216 & Chapter 3. MTG User Guide & \\
\hline & Chapter 3. MTG User Guide & \[
\begin{aligned}
& \rightarrow \text { apex }_{\bullet} \\
& \leftrightarrows \mathrm{U} 91
\end{aligned}
\] \\
\hline
\end{tabular}
(continued from previous page)

(continued from previous page)
\begin{tabular}{|c|c|}
\hline & (continued from previous page) \\
\\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline & \(\rightarrow\) - \\
\hline & \(\rightarrow\) \\
\hline & \(\rightarrow\) / \\
\hline \multicolumn{2}{|l|}{\(\rightarrow \mathrm{E} 10+\mathrm{U} 89\)} \\
\hline \(\wedge\) & \(\wedge\) \\
\hline \multicolumn{2}{|l|}{\(\rightarrow\)} \\
\hline \multicolumn{2}{|l|}{\(\rightarrow<\mathrm{U} 88\)} \\
\hline \multicolumn{2}{|l|}{\(\wedge\)} \\
\hline \multicolumn{2}{|l|}{\(\leftrightarrow\)} \\
\hline \multicolumn{2}{|l|}{\(\rightarrow<\mathrm{U} 87\)} \\
\hline , & - \\
\hline & \(\rightarrow \sqcup\) \\
\hline & \(\hookrightarrow_{\bullet}\) \\
\hline \multicolumn{2}{|l|}{\(\rightarrow \sqcup\)} \\
\hline \multicolumn{2}{|l|}{\(\rightarrow\) /} \\
\hline & \(\rightarrow \mathrm{E} 7+\mathrm{U} 87\) \\
\hline
\end{tabular}

Reference
Man-
ual
-

STAT
mod-
ule
4.2

Dress-
ing
files

\subsection*{3.8.3 Dres}

Files
(.drf)

The
dress-
ing
data
are
the
de-
fault
data
that
are
used
to
de-
fine
the
ge-
o-
met-
ric
mod-
els
as-
so-
ciated with geometric entities and to compute their geometric parameters when inference algorithms cannot be applied. These data are basically constant values (see the table below) and may be redefined in the dressing file. If no dressing file is defined, default (hard-coded) values are used (see table below). The dressing file .drf, if it exists in the current directory, is always used as a default dressing file.

The
dress-
ing
data
en-
tries
can
be
sub-
di-
vided
into 3
cat-
e-
gories
(any
of
these
cat-
e-
gories
can
be
omitted).

Definition of basic geometric models associated with plant components

A graphic model
can
be as-
so-
ci-
ated
with
a
com-
po-
nent


\begin{abstract}
fect
of
these

\section*{lines}
is
to
load
the
ge-
o-
met-
ric
mod-
els
that
are
de-
fined
in
files
file1.geom
and
in file ../../file2.geom. Each geometric model defined is these files is associated with a symbolic name. If the same symbolic name is found twice during the loading operation, an error is generated and should be corrected.

Any
sym-
bolic name

in-
tern-
ode)
can
then
be
as-
so-
ci-
ated
with
a
com-
po-
nent
us-
ing
the
class of the component as follows:

\end{abstract}


Alternatively, to
al-
low
for
as-
cen-
dant
com-
pat-
i-
bil-
ity
with
pre-
vi-
ous
ver-
sions
of
AMAP-
mod,
it
is
possible to directly refer to geometric models defined in .smb files. In this case, the set of geometric models corre-
sponds to the files contained in directory SMBPath and a geometric model can be loaded in AMAPmod by identifying a smb file in this directiry. This is done as follows in the dressing file:

```

SMBPath
G
\hookrightarrow.
๑.
|
\hookrightarrow
\hookrightarrow.
\hookrightarrow/
@databases
\hookrightarrowSMBFiles
SMBModel_
@internode
\hookrightarrow
@nentn105
SMBModel_
\hookrightarrowleaf3
\hookrightarrow=
@akleaf

```

Here,
ge-
O-
met-
ric
mod-
els
in-
tern-
ode2
and
are
re-
spec-
tively
as-
so-
ci-
ated
with
poly-
gon
files
nentn105.smb
and oakleaf.smb which are both located in directory .././/databases/SMBFiles.

Like
ex-
posed
above,
SMB
ge-
o-
met-


Then,
global
shapes
can
be
de-
fined
for
branches.
This
is
done
us-
ing
the
fea-
ture
"cat-
e-
gory"
de-
fined
for
branches.
The category of a branch is defined by the category of its first component. Note that the category may depend on the scale at which a branch is considered. For each category, the user can associate a 3 dimensional shape as a 3D bezier curve. The shape of the branch is then fit to the general shape associated with its category.
of
Bezier curves are
spec-i-
fied
in
a
file
bezier-
shapes.crv
(for
ex-
am-
ple),
we
can
as-
so-
ciate
branch categories with the Bezier curves using the following notation:
(

BranchPatter
\(\hookrightarrow=\)
\(\rightarrow\).
\(\rightarrow\).
\(\rightarrow /\)
\(\rightarrow\) Curves/
\(\leftrightarrow\) beziershal
\(\rightarrow\) crv
Form
\(\rightarrow\) category
\(\rightarrow=\) 」
\(\rightarrow\) curve2

Note
that
the
file
bezier-
shapes.crv
is
in-
cluded,
us-
ing
a
path
rel-
a-
tive
to
the
di-
rec-
tory where the .drf
file itself is located. Alternatively, an absolute filename could be given. The structure of the file beziershapes.crv is discribed in section 4.4.

\section*{Definition of virtual elements}

Components
that
don't
ap-
pear
in
an
MTG
de-
scrip-
tion
can
be
added
to
a
MTG
(e.g.
leaves,
flow-
ers
or fruits).
It
is possible to define these new symbols as follows:
(
(continued from previous page)

```

Class
GB
\hookrightarrow
\hookrightarrowapricot_
\hookrightarrowflower
LeafClass_
\hookrightarrow
L
FlowerClass
\hookrightarrow
G
FruitClasse
\hookrightarrow=
A

```

A
symbol
L
(a
char-
ac-
ter) is
de-
fined
and
is
as-
so-
ci-
ated
with
ge-
o-
met-
ric
model
leaf.
The two last lines associate respectively virtual leaf and fruit components with the geometric model associated with classes L and A .

\section*{Definition of defaults parameters}

The value of default pa-ram-e-


(continued from previous page)


default value, hard-coded into AMAPmod. The default values are defined in the following table: i
\begin{tabular}{|l|l}
\hline Name of the parameter & Description \\
\hline SMBPath & Plant where SMB files are recorded \\
\hline LengthUnit & Unit used to divide all the length data \\
\hline AlphaUnit & Unit used to divide all the insertion angle \\
\hline AzimutUnit & Unit used to divide all the angles \\
\hline DiametersUnit & Unit used to divide all the diameters \\
\hline DefaultEdge & Type of edge used to reconstruct a connected MTG \\
\hline DefaultAlpha & Default insertion angle (value in degrees with respect to the horizontal plane). \\
\hline Phillotaxy & Phyllotaxic angle (given in degrees) or in number of turns over number of leaves for this number of turns \\
\hline Alpha & Nature of the insertion angle. \\
\hline DefaultTeta & Default first Euler angle \\
\hline DefaultPhi & Default second Euler angle \\
\hline DefaultPsi & Default third Euler angle \\
\hline MinLength S & Default length for elements whose class is S. \\
\hline MinTopDiameter S & Default top diameter for elements whose class is S. \\
\hline MinBotDiameter S & Default bottom diameter for elements whose class is S. \\
\hline DefaultTrunkCategory & Default category for elements of the plant trunk. The default category of the other axes is their (botanical \\
\hline DefaultDistance & Distance between the trunk of two plants when several plants are vizualized at a time \\
\hline NbPlantsPerLine & Number of plants per line when several plants are vizualized at a time \\
\hline MediumTrresholdGreen & Green component of the color used for the values equal to the MediumThreshold (see command Plot on a \\
\hline MediumThresholdRed & Idem for the red component. \\
\hline MediumThresholdBlue & Idem for the blue component. \\
\hline MinThresholdGreen & Green component of the color used for the values equal to the MinThreshold (see command Plot on a PL \\
\hline MinThresholdRed & Idem for the red component. \\
\hline MinThresholdBlue & Idem for the blue component. \\
\hline MaxThresholdGreen & Green component of the color used for the values equal to the MaxThreshold (see command Plot on a PL \\
\hline MaxThresholdRed & Idem for the red component \\
\hline MaxThresholdBlue & Idem for the blue component. \\
\hline Whorl & Number of virtual symbols per node \\
\hline LeafClass & Class used for a leaf \\
\hline LeafLength & Length of the leaf \\
\hline LeafTopDiameter & Top diameter of the leaf \\
\hline & \\
\hline
\end{tabular}

Table 1 - continued from previous \(p\)
\begin{tabular}{|l|l|}
\hline Name of the parameter & Description \\
\hline LeafBottomDiameter & Bottom diameter of the leaf \\
\hline LeafAlpha & Insertion angle of a leaf \\
\hline LeafBeta & Azimuthal angle of a leaf (w.r.t its carrier) \\
\hline FruitClass & Class used for a fruit \\
\hline FruitLength & Length of the fruit \\
\hline FruitTopDiamter & Top diameter of the fruit \\
\hline FruitBottomDiameter & Bottom diameter of the fruit \\
\hline FruitAlpha & Insertion angle of a fruit \\
\hline FruitBeta & Azimuthal angle of a fruit (w.r.t its carrier) \\
\hline FlowerClass & Class used for a flower \\
\hline FlowerLength & Length of the flower \\
\hline FlowerTopDiameter & Top diameter of the flower \\
\hline FlowerBottomDiameter & Bottom diameter of the flower \\
\hline FlowerAlpha & Insertion angle of a flower \\
\hline FlowerBeta & Azimuthal angle of a flower (w.r.t its carrier) \\
\hline
\end{tabular}

\section*{Example of dressing file}

\subsection*{3.8.4 Curv \\ Files \\ (.crv)}

A
curve
file
con-
tains
the
spec-
i-
fi-
ca-
tion
of
Bezier
curves.
It
has
the
fol-
low-
ing
gen-
eral
structure:
\(n\)
curve1
\(k_{1}\)
\(x_{1} y_{1} z_{1}\)
\(x k 1 y k 1 z k 1\) curve2
\(k 2\)
\(x 1 y 1 z 1\)
...
\(x k 2 y k 2 z k 2\)
cur-
ven
kn
\(x 1 y 1 z 1\)
xknyknzkn
where
n,
k1,
kn,
are
in-
te-
gers
and
curve1,
curve2,
...,
cur-
ven
are
strings
of
char-
ac-
ters.
All
co-
or-
di-
nates are real numbers.



\subsection*{3.9 Lsys}

\section*{Author}

Thomas
Coke-
laer <Thomas.Coke
- Lsystem and MTGs
- General usage
- Extract information from the lsystem
* axiom
* context
* last iteration
- Activate the lsystem with makecurrent
- Executing the lsystem
* animate
* iterate
- Transform the lstring/axialtree into MTG and vice-versa
* lpy2mtg method
* axialtree 2 mtg method
* mtg2lpy and lpy2mtg method

\(\square\)

First,
im-
port some modules
import
    \(\rightarrow\) openalea.
    \(\rightarrow \mathrm{lpy}_{\lrcorner}\)
    \(\rightarrow \mathbf{a s}_{-}\)
    \(\rightarrow 1 p y\)
from
    \(\rightarrow\) PyQt 4 .
    \(\rightarrow\) QtCore
    \(\rightarrow\) import
    \(\rightarrow *\)
from
    \(\rightarrow\) PyQt 4 .
    \(\rightarrow\) QtGui
    \(\rightarrow\) import
    \(\rightarrow *\)
import \(_{\text {b }}\)
    \(\rightarrow\) time
from
    \(\rightarrow\) openalea.
    \(\hookrightarrow\) plantgl.
    \(\rightarrow\) all
    \(\rightarrow\) import
\(\rightarrow *\)
from
\(\rightarrow\) openalea.
\(\rightarrow \mathrm{mtg}\).
\(\rightarrow\) io
\(\rightarrow\) import
\(\rightarrow\) lpy2mtg,
\(\rightarrow \sqcup\)
\(\hookrightarrow m t g 2 l p y\),
\(\rightarrow \sqcup\)
\(\rightarrow\) axialtree
\(\rightarrow \sqcup\)
\(\leftrightarrow m t g 2 a x i a l t\)
from
\(\rightarrow\) openalea.
\(\rightarrow\) mtg .
\(\rightarrow \mathrm{aml}_{\bullet}\)
\(\rightarrow\) import \(_{\lrcorner}\)

(
(
a
PNG
file
as
fol-
lows:
```

>
\hookrightarrow>
\bullet
\iewer.
๑frameGL.
saveImage
\hookrightarrow'output.
->png
`',
\hookrightarrow
\hookrightarrow
\hookrightarrow'png
\hookrightarrow')

```
\(\qquad\)
3.9.2 Extra
in-
for-
ma-
tion
from
the
Isys-
tem
axiom

Get
mtg Documentation, Release 2.1.2


\section*{last iteration}
(

\(\rightarrow>\)
\(\stackrel{\hookrightarrow}{\hookrightarrow} \stackrel{+}{\bullet}\)
\(\rightarrow\) getLastIt
6
\(>\)
\(\rightarrow>\)
\(\rightarrow>\)
\(\hookrightarrow\)
\(\mapsto 1\).
\(\rightarrow 1\).
\(\rightarrow\) derivatior
7
3.9.3 Activ
the
Isys-
tem
with
make-
cur-
rent

Todo: what is this for ?
\(\square\)
1.
\(\rightarrow\) makeCurrer
3.9.4 Exec
the
Isystem
animate

In
or-
der
to
run
the
lsys-
tem
step
by
step
with
a
plot
re-
fresh-
ing
at
each
step,
use
an-
i-
mate(),
for which you may provide a minimal time step between each iteration.

1.
\(\rightarrow\) animate (st
where
step
is
in
sec-
onds.
Note
that
you
may
still
set
the


\section*{iterate}
4
4

\footnotetext{
Run
all
steps
un-
til
the
end:
```

>
iterate()

```
}

(continued from previous page)
(
```

FF[+F[+X]F[-
@X]+X]FF[-
G[+X]F[-
\hookrightarrowX]+X]+E[+Y
GX]+X
F[+X]F[-
<X]+X
FF[+F[+X]F[
\hookrightarrow}]+X]\textrm{FF}[
G[+X]F[-
\hookrightarrowX]+X]+F[+\Sigma
C]+X
True

```

Note: When using iterate() with 1 argument, the Lsystem is run from the beginning again. To keep track of a previous run, 3 arguments are required. In such case, the first is used only to keep track of the number of iteration, that is stored in l.getLastIterationNb(), the second argument is then the number of iteration required and the 3 d argument is the axiom (i.e., the previous AxialTree output).

\subsection*{3.9.5 Trans}
the
Istring/axia
into
MTG

\section*{and}
vice-
versa
```

>

```
\(\rightarrow>\)
\(\leftrightarrow>\)
\(\rightarrow\) •
\(\rightarrow\) axialtree
\(\hookrightarrow=\)
\(\rightarrow 1\).
\(\rightarrow\) iterate()

\section*{lpy2mtg method}
axialtree 2 mtg method
(continued from previous page)
```

F[+X]F[-

```
F[+X]F[-
    ->X]+X.
    ->X]+X.
    \leftrightarrows.
    \leftrightarrows.
    \leftrightarrows.
    \leftrightarrows.
    >
    >
        \leftrightarrow>
        \leftrightarrow>
    ->>
    ->>
    \hookrightarrow
    \hookrightarrow
    scales
    scales
    \hookrightarrow
    \hookrightarrow
    \hookrightarrow
    \hookrightarrow
    \rightarrow \{
    \rightarrow \{
    G'F
    G'F
    \hookrightarrow':1,
    \hookrightarrow':1,
    \hookrightarrow
    \hookrightarrow
    G'X
    G'X
    \leftrightarrow':1}
    \leftrightarrow':1}
    \leftrightarrow
    \leftrightarrow
>
>
    ->>
    ->>
    ->>
    ->>
    \bullet
    \bullet
    \mapstotg1_
    \mapstotg1_
    \hookrightarrow"
    \hookrightarrow"
    ->axialtree
    ->axialtree
\bullet
\bullet
Gcales,
Gcales,
\bullet
\bullet
\leftrightarrow 1 .
\leftrightarrow 1 .
\leftrightarrow \text { SceneIntel}
\leftrightarrow \text { SceneIntel}
\hookrightarrow
\hookrightarrow
\None)
```

\None)

```
and
come
back
to
the
orig-i-
nal
one:
\(\rightarrow>\)
\(\rightarrow\)
\(\rightarrow\) tree1
\(\hookrightarrow=\)
\(\rightarrow\) mtg2axialt
\(\rightarrow\) -
\(\rightarrow\) scales,
\(\rightarrow\) None,
\(\hookrightarrow \sqcup\)
(continued from previous page)
\begin{tabular}{|cc|}
\hline & (continued from previous page) \\
\hline
\end{tabular}
```

>
\hookrightarrow
\hookrightarrow
->-\mp@code{assert}
str(axialt
True

```
mtg2lpy and Ipy2mtg method


\(\rightarrow>\)
    \(\rightarrow>\)
    \(\hookrightarrow_{\bullet}\)

    \(\hookrightarrow=\)
    \(\rightarrow 1\) py2mtg (as
    \(\rightarrow \sqcup\)
    \(\rightarrow 1)\)
\(>\)
    \(\rightarrow>\)
    \(\rightarrow>\)
    \(\hookrightarrow \sqcup\)
    \(\rightarrow\) tree2
    \(\rightarrow=\) 」
    \(\rightarrow 1\) py2mtg(mt
    \(\stackrel{\rightharpoonup}{\bullet}\)
    \(\rightarrow 1\),
    \(\rightarrow \sqcup\)
    \(\rightarrow\) axialtree)
\(>\)
    \(\rightarrow>\)
\(\rightarrow>\)
    \(\rightarrow\)
    \(\stackrel{\hookrightarrow}{\hookrightarrow} \stackrel{\text { assert }}{\bullet}\)
    \(\rightarrow\) str(axialt
True
\(>\)
    \(\rightarrow>\)
    \(\rightarrow>\)
    \(\rightarrow \sqcup\)
    \(\rightarrow\) Scene
    \(\rightarrow=\) ப
    \(\rightarrow 1\).
    \(\leftrightarrow\) sceneIntel
if
no
lsys-
tem
is
avail-
abe,
you

\subsection*{3.10 \\ Bibl}
3.11 Clas
and
In-
ter-
faces

Each
data
struc-
ture
im-
ple-
ment
a
set
of
spe-
cific
in-
ter-
face.
These
in-
ter-
faces
de-
fine
the
name
of
the methods, their semantic, and sometime their complexity.

\subsection*{3.12 Alg}

The openalea. mtg.
mtg
pack-
age
pro-
vides
data
struc-
ture
as
well
as
al-
gorithms. This section in-
troduces the
reader to the main algorithms and shows simple examples.

\section*{CHAPTER 4}

Reference

\subsection*{4.1 MTG - Multi-scale Tree Graph}

\subsection*{4.1.1 Overview}
```

openalea.mtg.mtg.MTG (filename=", has_date=False)

```

A Multiscale Tree Graph (MTG) class.
MTGs describe tree structures at different levels of details, named scales. For example, a botanist can described plants at different scales :
- at scale 0 , the whole scene.
- at scale 1 , the individual plants.
- at scale 2, the axes of each plants.
- at scale 3, the growth units of each axis, and so on.

Each scale can have a label, e.g. :
- scale \(1: \mathrm{P}(\) lant \()\)
- scale 2 : A (xis)
- sclae 3 : U(nit of growth)

Compared to a classical tree, complex () can be seen as parent () and components () as children(). An element at scale () N belongs to a complex () at scale() \(\mathrm{N}-1\) and has components () at scale \(\mathrm{N}+1\) :
- /P/A/U (decomposition is noted using "/")

Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:
- /P1/P2/P3
- \(\mathrm{A} 1+\mathrm{A} 2<\mathrm{A} 3\)
- ...

\subsection*{4.1.2 Iterating over vertices}
\begin{tabular}{|c|c|}
\hline MTG.root & Return the tree root. \\
\hline MTG.vertices([scale]) & Return a list of the vertices contained in an MTG. \\
\hline MTG.nb_vertices([scale]) & Returns the number of vertices. \\
\hline MTG.parent(vtx_id) & Return the parent of vtx_id. \\
\hline MTG.children(vtx_id) & returns a vertex iterator \\
\hline MTG.nb_children(vtx_id) & returns the number of children \\
\hline MTG.siblings(vtx_id) & returns an iterator of vtx_id siblings. \\
\hline MTG.nb_siblings(vtx_id) & returns the number of siblings \\
\hline MTG. \(\operatorname{roots}([\) scale]) & Returns a list of the roots of the tree graphs at a given scale. \\
\hline MTG.complex(vtx_id) & Returns the complex of vtx_id. \\
\hline MTG. components(vid) & returns the components of a vertex \\
\hline MTG.nb_components(vid) & returns the number of components \\
\hline MTG.complex_at_scale(vtx_id, scale) & Returns the complex of vtx_id at scale scale. \\
\hline MTG.components_at_scale(vid, scale) & returns a vertex iterator \\
\hline
\end{tabular}

\subsection*{4.1.3 Adding and removing vertices}
\begin{tabular}{|c|c|}
\hline MTG.__init__([filename, has_date]) & Create a new MTG object. \\
\hline MTG.add_child(parent[, child]) & Add a child to a parent. \\
\hline MTG.insert_parent(vtx_id[, parent_id]) & Insert parent_id between vtx_id and its actual parent. \\
\hline MTG.insert_sibling(vtx_id1[, vtx_id2]) & Insert a sibling of vtk_id1. \\
\hline \(\qquad\) & Add a component at the end of the components \\
\hline MTG.add_child_and_complex(parent[, child, ...]) & Add a child at the end of children that belong to an other complex. \\
\hline MTG.add_child_tree(parent, tree) & Add a tree after the children of the parent vertex. \\
\hline MTG.clear() & Remove all vertices and edges from the MTG. \\
\hline
\end{tabular}

\subsection*{4.1.4 Some usefull functions}
\begin{tabular}{ll}
\hline simple_tree(tree, vtx_id[, nb_children, ...]) & \begin{tabular}{l} 
Generate and add a regular tree to an existing one at a \\
given vertex.
\end{tabular} \\
\hline random_tree(mtg, root[, nb_children, ...]) & Generate and add a random tree to an existing one. \\
\hline random_mtg(tree, nb_scales) & Convert a tree into an MTG of nb_scales. \\
\hline colored_tree(tree, colors) & \begin{tabular}{l} 
Compute a mtg from a tree and the list of vertices to be \\
\\
\\
quotiented.
\end{tabular} \\
\hline display_tree(tree, vid[, tab, labels, edge_type]) & Display a tree structure. \\
\hline display_mtg(mtg, vid) & Display an MTG \\
\hline
\end{tabular}

\subsection*{4.1.5 All}
class openalea.mtg.mtg.MTG (filename \(=\) ", has_date \(=\) False)
Bases: openalea.mtg.tree.PropertyTree
A Multiscale Tree Graph (MTG) class.
MTGs describe tree structures at different levels of details, named scales. For example, a botanist can described
plants at different scales :
- at scale 0 , the whole scene.
- at scale 1 , the individual plants.
- at scale 2, the axes of each plants.
- at scale 3, the growth units of each axis, and so on.

Each scale can have a label, e.g. :
- scale \(1: ~ P(\) lant \()\)
- scale 2 : A (xis)
- sclae 3 : U(nit of growth)

Compared to a classical tree, complex () can be seen as parent () and components () as children(). An element at scale () N belongs to a complex () at scale () \(\mathrm{N}-1\) and has components () at scale \(\mathrm{N}+1\) :
- /P/A/U (decomposition is noted using "/")

Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:
- /P1/P2/P3
- \(\mathrm{A} 1+\mathrm{A} 2<\mathrm{A} 3\)
- ...

AlgHeight (v1, v2)
Algebraic value defining the number of components between two components.
This function is similar to function \(\operatorname{Height}(v 1, v 2)\) : it returns the number of components between two components, at the same scale, but takes into account the order of vertices \(v 1\) and \(v 2\).
The result is positive if \(v 1\) is an ancestor of \(v 2\), and negative if \(v 2\) is an ancestor of \(v l\).

\section*{Usage}
```

AlgHeight(v1, v2)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

\section*{Returns int}

If \(v 1\) is not an ancestor of \(v 2\) (or vise versa), or if \(v 1\) and \(v 2\) are not defined at the same scale, an error value None is returned.

\section*{See also:}

MTG(), Rank(), Order(), Height (), EdgeType(), AlgOrder(), AlgRank().
AlgOrder ( \(v 1, v 2\) )
Algebraic value defining the relative order of one vertex with respect to another one.
This function is similar to function \(\operatorname{Order}(v 1, v 2):\) it returns the number of +-type edges between two components, at the same scale, but takes into account the order of vertices \(v 1\) and \(v 2\).

The result is positive if \(v 1\) is an ancestor of \(v 2\), and negative if \(v 2\) is an ancestor of \(v 1\).

\section*{Usage}

AlgOrder(v1, v2)

\section*{Parameters}
- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int
If \(v 1\) is not an ancestor of \(v 2\) (or vise versa), or if \(v 1\) and \(v 2\) are not defined at the same scale, an error value None is returned.

\section*{See also:}

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgRank().
AlgRank ( \(v 1, v 2\) )
Algebraic value defining the relative rank of one vertex with respect to another one.
This function is similar to function \(\operatorname{Rank}(v 1, v 2):\) it returns the number of <-type edges between two components, at the same scale, but takes into account the order of vertices \(v 1\) and \(v 2\).

The result is positive if \(v l\) is an ancestor of \(v 2\), and negative if \(v 2\) is an ancestor of \(v l\).

\section*{Usage}
```

AlgRank(v1, v2)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

\section*{Returns int}

If \(v 1\) is not an ancestor of \(v 2\) (or vise versa), or if \(v 1\) and \(v 2\) are not defined at the same scale, an error value None is returned.

\section*{See also:}

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgOrder().
Ancestors ( \(v\), EdgeType \(=\) '*', RestrictedTo='NoRestriction', ContainedIn=None)
Array of all vertices which are ancestors of a given vertex
This function returns the array of vertices which are located before the vertex passed as an argument. These vertices are defined at the same scale as \(v\). The array starts by \(v\), then contains the vertices on the path from \(v\) back to the root (in this order) and finishes by the tree root.

Note: The anscestor array always contains at least the argument vertex \(v\).

\section*{Usage}
```

g.Ancestors(v)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father
- EdgeType (str): cf. Father

Returns list of vertices's id (int)

\section*{Examples}
```

>>> v \# prints vertex v
78
>>> g.Ancestors(v) \# set of ancestors of v at the same scale
[78,45,32,10,4]
>>> list(reversed(g.Ancestors(v))) \# To get the vertices in the order from
the root to the vertex v
[4,10,32,45,78]

```

\section*{See also:}

MTG(), Descendants().
Axis ( \(v\), Scale \(=-1\) )
Array of vertices constituting a botanical axis
An axis is a maximal sequence of vertices connected by ' \(<\) '-type edges. Axis return the array of vertices representing the botanical axis which the argument v belongs to. The optional argument enables the user to choose the scale at which the axis decomposition is required.

\section*{Usage}
```

Axis(v)
Axis(v, Scale=s)

```

\section*{Parameters}
- v (int) : Vertex of the active MTG

Optional Parameters
- Scale (str): scale at which the axis components are required.

Returns list of vertices ids


\section*{See also:}

MTG(), Path(), Ancestors().
Class (vid)
Class of a vertex.
The Class of a vertex are the first characters of the label. The label of a vertex is the string defined by the concatenation of the class and its index.
The label thus provides general information about a vertex and enable to encode the plant components.
The class_name may be not defined. Then, an empty string is returned.

\section*{Usage}
>>> g.class_name(1)

\section*{Parameters}
- vid (int)

Returns The class name of the vertex (str).

\section*{See also:}

MTG(), openalea.mtg.aml.Index(),openalea.mtg.aml.Class()

\section*{ClassScale (c)}

Scale at which appears a given class of vertex
Every vertex is associated with a unique class. Vertices from a given class only appear at a given scale which can be retrieved using this function.

Usage
```

ClassScale(c)

```

\section*{Parameters}
- \(c\) (str) : symbol of the considered class

\section*{Returns int}

\section*{See also:}

MTG(), Class(), Scale(), Index().
Complex ( \(v\), Scale \(=-1\) )
Complex of a vertex.
Returns the complex of \(v\). The complex of a vertex \(v\) has a scale lower than \(v: \operatorname{Scale}(v)-1\). In a MTG, every vertex except for the MTG root (cf. MTGRoot), has a uniq complex. None is returned if the argument is the MTG Root or if the vertex is undefined.

\section*{Usage}
```

g.Complex(v)

```
g.Complex(v, Scale=2)

\section*{Parameters}
- \(v\) (int) : vertex of the active MTG

Optional Parameters
-Scale (int) : scale of the complex
Returns Returns vertex's id (int)
Details When a scale different form Scale(v)-1 is specified using the optional parameter Scale, this scale must be lower than that of the vertex argument.

Todo: Complex(v, Scale=10) returns v why ? is this expected

\section*{See also:}

MTG(), Components ().
ComponentRoots ( \(v\), Scale \(=-1\) )
Set of roots of the tree graphs that compose a vertex
In a MTG, a vertex may have be decomposed into components. Some of these components are connected to each other, while other are not. In the most general case, the components of a vertex are organized into several tree-graphs. This is for example the case of a MTG containing the description of several plants: the MTG root vertex can be decomposed into tree graphs (not connected) that represent the different plants. This function returns the set of roots of these tree graphs at scale Scale(v)+1. The order of these roots is not significant.
When a scale different from \(\operatorname{Scale}(v)+1\) is specified using the optional argument \(\operatorname{Scale}()\), this scale must be greater than that of the vertex argument.

\section*{Usage}
```

g. ComponentRoots (v)
g.ComponentRoots(v, Scale=s)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- Scale (str): scale of the component roots.

Returns list of vertices's id (int)

\section*{Examples}
```

>>> v=g.MTGRoot() \# global MTG root
0
>>> g.ComponentRoots(v) \# set of first vertices at scale 1
[1,34,76,100,199,255]
>>> g.ComponentRoots(v, Scale=2) \# set of first vertices at scale 2
[2,35,77,101,200, 256]

```


\section*{See also:}

MTG(), Components(), Trunk().
Components ( \(v\), Scale \(=-1\) )
Set of components of a vertex.
The set of components of a vertex is returned as a list of vertices. If \(\mathbf{s}\) defines the scale of \(\mathbf{v}\), components are defined at scale \(\mathbf{s}+1\). The array is empty if the vertex has no components. The order of the components in the array is not significant.

When a scale is specified using optional argument :arg:Scale, it must be necessarily greater than the scale of the argument.

\section*{Usage}

Components (v)
Components(v, Scale=2)

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- Scale (int) : scale of the components.

Returns list of int


\section*{See also:}

MTG(), Complex ().
Defined (vid)
Test whether a given vertex belongs to the active MTG.
Usage
Defined (v)

\section*{Parameters}
- v (int) : vertex of the active MTG

Returns True or False

\section*{See also:}

MTG ().
Descendants ( \(v\), EdgeType='*', RestrictedTo='NoRestriction', ContainedIn=None)
Set of vertices in the branching system borne by a vertex.
This function returns the set of descendants of its argument as an array of vertices. The array thus consists of all the vertices, at the same scale as \(v\), that belong to the branching system starting at \(v\). The order of the vertices in the array is not significant.

Note: The argument always belongs to the set of its descendants.

\section*{Usage}
g.Descendants (v)

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father
- EdgeType (str): cf. Father

Returns list of int.

\section*{Examples}
```

>>> v
78
>>> g.Sons(v) \# set of sons of v
[78,99,101]
>>> g.Descendants(v) \# set of descendants of V
[78,99,101,121,133,135,156,171,190]

```


See also:
MTG(), Ancestors().
EdgeType ( \(v 1, v 2\) )
Type of connection between two vertices.
Returns the symbol of the type of connection between two vertices (either \(<\) or + ). If the vertices are not connected, None is returned.

\section*{Usage}

EdgeType (v1, v2)

\section*{Parameters}
- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns '<' (successor), ' + ' (branching) or None


\section*{See also:}

MTG(), Sons(), Father().

\section*{Extremities ( \(v\), RestrictedTo='NoRestriction', ContainedIn=None)}

Set of vertices that are the extremities of the branching system born by a given vertex.
This function returns the extremities of the branching system defined by the argument as a list of vertices. These vertices have the same scale as \(v\) and their order in the list is not signifiant. The result is always a non empty array.

\section*{Usage}
```

Extremities(v)

```

\section*{Properties}
- v (int) : vertex of the active MTG

Optional Parameters
- RestrictedTo (str): cf. Father ()
- ContainedIn (int): cf. Father ()

Returns list of vertices's id (int)

\section*{Examples}
```

>>> g.Descendants(v)
[3, 45, 47, 78, 102]

```
```

>>> g.Extremities(v)
[47, 102]

```

\section*{See also:}

MTG(), Descendants(), Root(), MTGRoot().
Father ( \(v\), EdgeType \(=\) '*', RestrictedTo='NoRestriction', ContainedIn \(=\) None, Scale \(=-1\) )
Topological father of a given vertex.
Returns the topological father of a given vertex. And None if the father does not exist. If the argument is not a valid vertex, None is returned.

\section*{Usage}
```

g.Father(v)
g.Father(v, EdgeType='<')
g.Father(v, RestrictedTo='SameComplex')
g.Father(v, ContainedIn=complex_id)
g.Father(v, Scale=s)

```

Parameters v (int) : vertex of the active MTG
Optional Parameters If no optional argument is specified, the function returns the topological father of the argument (vertex that bears or precedes to the vertex passed as an argument).

It may be usefull in some cases to consider that the function only applies to a subpart of the MTG (e.g. an axis).
The following options enables us to specify such restrictions:
- EdgeType (str) : filter on the type of edge that connect the vertex to its father.

Values can be '<', '+', and '*'. Values '*' means both ' \(<\) ' and ' + '. Only the vertex connected with the specified type of edge will be considered.
- RestrictedTo (str) : filter defining a subpart of the MTG where the father must be considered. If the father is actually outside this subpart, the result is None. Possible subparts are defined using keywords in ['SameComplex', 'SameAxis', 'NoRestriction'].

For instance, if RestrictedTo is set to 'SameComplex', Father (v) () returns a defined vertex only if the father \(f\) of \(v\) existsin the MTG and if \(v\) and \(f\) have the same complex.
- ContainedIn (int) : filter defining a subpart of the MTG where the father must be considered. If the father is actually outside this subpart, the result is None.
In this case, the subpart of the MTG is made of the vertices that composed composite_id (at any scale).
- Scale (int) : the scale of the considered father. Returns the vertex from scale \(s\) which either bears and precedes the argument.

The scale \(s\) can be lower than the argument's (corresponding to a question such as 'which axis bears the internode?') or greater (e.g. 'which internodes bears this annual shoot?').
Returns the vertex id of the Father (int)

\section*{See also:}

MTG(), Defined(), Sons(), EdgeType(), Complex(), Components().

Height ( \(v 1, v 2=\) None)
Number of components existing between two components in a tree graph.
The height of a vertex ( \(v 2\) ) with respect to another vertex ( \(v 1\) ) is the number of edges (of either type ' + ' or ' \(<\) ') that must be crossed when going from \(v 1\) to \(v 2\) in the graph.

This is a non-negative integer. When the function has only one argument \(v l\), the height of \(v l\) correspond to the height of \(v 1\) 'with respect to the root of the branching system containing ' \(v 1\).

\section*{Usage}
```

Height(v1)
Height(v1, v2)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that one is an ancestor of the other. When the order is relevant, use function AlgHeight.

\section*{See also:}

MTG(), Order(), Rank(), EdgeType(), AlgHeight(), AlgHeight(), AlgOrder().
Index (vid)
Index of a vertex
The Index of a vertex is a feature always defined and independent of time (like the index). It is represented by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and its index. The label thus provides general information about a vertex and enables us to encode the plant components.

Label (vid)
Label of a vertex.

\section*{Usage}
```

>>> g.label(v)

```

\section*{Parameters}
- vid (int) : vertex of the MTG

Returns The class and Index of the vertex (str).

\section*{See also:}

MTG(), index(), class_name()
Path ( \(v 1, v 2\) )
List of vertices defining the path between two vertices
This function returns the list of vertices defining the path between two vertices that are in an ancestor relationship. The vertex \(v 1\) must be an ancestor of vertex \(v 2\). Otherwise, if both vertices are valid, then the empty array is returned and if at least one vertex is undefined, None is returned.

\section*{Usage}
g.Path (v1, v2)

\section*{Parameters}
- \(v l\) (int) : vertex of the active MTG
- \(v 2\) (int) : vertex of the active MTG

Returns list of vertices's id (int)

\section*{Examples}
```

>>> v \# print the value of v
78
>>> g.Ancestors(v)
[78,45,32,10,4]
>>> g.Path (10,v)
[10,32,45,78]
>>> g.Path(9,v) \# 9 is not an ancestor of }7
[]

```

Note: \(v 1\) can be equal to \(v 2\).


\section*{See also:}

MTG(), Axis(), Ancestors().
Predecessor ( \(v,{ }^{* *} k w d s\) )
Father of a vertex connected to it by a ' \(<\) ' edge
This function is equivalent to Father(v, EdgeType-> ' \(<\) '). It thus returns the father (at the same scale) of the argument if it is located in the same botanical. If it does not exist, None is returned.

\section*{Usage}
```

Predecessor(v)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns return the vertex id (int)

\section*{Examples}
```

>>> Predecessor(v)
7
>>> Father(v, EdgeType='+')
>>> Father(v, EdgeType-> '<')
7

```

\section*{See also:}
```

MTG(),Father(),Successor().

```
Rank ( \(v 1, v 2=\) None)

Rank of one vertex with respect to another one.
This function returns the number of consecutive '<'-type edges between two components, at the same scale, and does not take into account the order of vertices \(v 1\) and \(v 2\). The result is a non negative integer.

\section*{Usage}
```

Rank(v1)

```
Rank (v1, v2)

\section*{Parameters}
- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

\section*{Returns int}

If v 1 is not an ancestor of v 2 (or vise versa) within the same botanical axis, or if v 1 and v 2 are not defined at the same scale, an error value Undef id returned.

\section*{See also:}

MTG(), Order(), Height(), EdgeType(), AlgRank(), AlgHeight(), AlgOrder().
Root ( \(v\), RestrictedTo='*', ContainedIn=None)
Root of the branching system containing a vertex
This function is equivalent to Ancestors(v, EdgeType=' \(<\) ') \([-1]\). It thus returns the root of the branching system containing the argument. This function never returns None.

\section*{Usage}
```

g.Root(v)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns return vertex's id (int)

\section*{Examples}
```

>>> g.Ancestors(v) \# set of ancestors of v
[102,78,35,33,24,12]
>>> g.Root(v) \# root of the branching system containing v
12

```


See also:
MTG(), Extremities().
Scale (vid)
Returns the scale of a vertex.
All vertices should belong to a given scale.
Usage
g.scale(vid)

\section*{Parameters}
- vid (int) - vertex identifier.

Returns The scale of the vertex. It is a positive int in [0,g.max_scale()].
Sons ( \(v\), RestrictedTo ='NoRestriction', EdgeType='*', Scale \(=-1\), ContainedIn=None)
Set of vertices born or preceded by a vertex

The set of sons of a given vertex is returned as an array of vertices. The order of the vertices in the array is not significant. The array can be empty if there are no son vertices.

\section*{Usage}
```

g.Sons(v)
g.Sons(v, EdgeType= '+')
g.Sons(v, Scale= 3)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str) : cf. Father ()
- ContainedIn (int) : cf. Father ()
- EdgeType (str) : filter on the type of sons.
- Scale (int) : set the scale at which sons are considered.

\section*{Returns list(vid)}

Details When the option EdgeType is applied, the function returns the set of sons that are connected to the argument with the specified type of relation.

Note: Sons(v, EdgeType \(=\) ' \(<\) ') is not equivalent to Successor(v). The first function returns an array of vertices while the second function returns a vertex.

The returned vertices have the same scale as the argument. However, coarser or finer vertices can be obtained by specifying the optional argument Scale at which the sons are considered.

\section*{Examples}
```

>>> g.Sons(v)
[3,45,47,78,102]
>>> g.Sons(v, EdgeType= '+') \# set of vertices borne by v
[3,45,47,102]
>>> g.Sons(v, EdgeType= '<') \# set of successors of }v\mathrm{ on the same axis
[78]

```

\section*{See also:}
```

MTG(),Father(), Successor(), Descendants().

```

\section*{Successor ( \(v\), RestrictedTo='NoRestriction', ContainedIn=None)}

Vertex that is connected to a given vertex by a ' \(<\) ' edge type (i.e. in the same botanical axis).
This function is equivalent to \(\operatorname{Sons}\left(\mathrm{v}\right.\), EdgeType=' \(\left.<^{\prime}\right)[0]\). It returns the vertex that is connected to a given vertex by a ' \(<\) ' edge type (i.e. in the same botanical axis). If many such vertices exist, an arbitrary one is returned by the function. If no such vertex exists, None is returned.

Usage
```

g.Successor(v)

```

Parameters
- v1 (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns Returns vertex's id (int)
Examples
```

>>> g.Sons(v)
[3, 45, 47, 78, 102]
>>> g.Sons(v, EdgeType='+') \# set of vertices borne by v
[3, 45, 47, 102]
>>> g.Sons(v, EdgeType-> '<') \# set of successors of v
[78]
>>> g.Successor(v)
78

```

\section*{See also:}

MTG(), Sons(), Predecessor().
Trunk ( \(v\), Scale=-1)
List of vertices constituting the bearing botanical axis of a branching system.
Trunk returns the list of vertices representing the botanical axis defined as the bearing axis of the whole branching system defined by \(v\). The optional argument enables the user to choose the scale at which the trunk should be detailed.

\section*{Usage}

Trunk (v)
Trunk (v, Scale= s)

\section*{Parameters}
- \(v\) (int) : Vertex of the active MTG.

\section*{Optional Parameters}
- Scale (str): scale at which the axis components are required.

Returns list of vertices ids

Todo: check the usage of the optional argument Scale

\section*{See also:}

MTG(), Path(), Ancestors(), Axis().
VtxList (Scale=-1)
Array of vertices contained in a MTG
The set of all vertices in the \(M T G()\) is returned as an array. Vertices from all scales are returned if no option is used. The order of the elements in this array is not significant.

\section*{Usage}
```

>>> VtxList()
>>> VtxList(Scale=2)

```

\section*{Optional Parameters}
- Scale (int): used to select components at a particular scale.

\section*{Returns}
- list of vid

Background MTGs ()
See also:
MTG(), scale(), Class(), index().
add_child(parent, child=None, **properties)
Add a child to a parent. Child is appended to the parent's child list.

\section*{Parameters}
- parent (int) - The parent identifier.
- child (int or None) - The child identifier. If None, an ID is generated.

Returns Identifier of the inserted vertex (child)
Returns Type int
add_child_and_complex (parent, child=None, complex=None, \(* *\) properties)
Add a child at the end of children that belong to an other complex.

\section*{Parameters}
- parent: The parent identifier.
- child: Set the child identifier to this value if defined.
- complex: Set the complex identifier to this value if defined.

Returns (vid, vid): child and complex ids.
add_child_tree (parent, tree)
Add a tree after the children of the parent vertex. Complexity have to be \(\mathrm{O}(1)\) if tree \(==\) sub_tree()

\section*{Parameters}
- parent - vertex identifier
- tree - a rooted tree
add_component (complex_id, component_id=None, **properties)
Add a component at the end of the components

\section*{Parameters}
- complex_id: The complex identifier.
- component_id: Set the component identifier to this value if defined.

Returns The id of the new component or the component_id if given.
add_element (parent_id, edge_type \(=\) ' \(/\) ', scale_id=None)
Add an element to the graph, if vid is not provided create a new vid ??? .. warning: Not Implemented.

\section*{Parameters}
- parent_id (int) - The id of the parent vertex
- edge_type (str) - The type of relation:
_ " \(/ ":\) component (default)
_ "+": branch
- "<": successor.
- scale_id (int) - The id of the scale in which to add the vertex.

Returns The vid of the created vertex
add_property (property_name)
Add a new map between vid and a data Do not fill this property for any vertex
```

backward_rewriting_traversal()

```
children (vtx_id)
returns a vertex iterator
Parameters vtx_id - The vertex identifier.
Returns iter of vertex identifier
```

children_iter(vtx_id)

```
returns a vertex iterator
Parameters vtx_id - The vertex identifier.
Returns iter of vertex identifier
class_name (vid)
Class of a vertex.
The Class of a vertex are the first characters of the label. The label of a vertex is the string defined by the concatenation of the class and its index.

The label thus provides general information about a vertex and enable to encode the plant components. The class_name may be not defined. Then, an empty string is returned.

\section*{Usage}
>>> g.class_name(1)

\section*{Parameters}
- vid (int)

Returns The class name of the vertex (str).
See also:
MTG(), openalea.mtg.aml.Index(), openalea.mtg.aml.Class()
clear()
Remove all vertices and edges from the MTG.
This also removes all vertex properties. Don't change references to object such as internal dictionaries.

\section*{Example}
```

>>> g.clear()
>>> g.nb_vertices()
0
>>> len(g)
0

```
clear_properties (exclude=[])
Remove all the properties of the MTG.

\section*{Example}
```

>>> g.clear_properties()

```
complex ( \(v t x \_i d\) )

Returns the complex of \(v t x \_i d\).

\section*{Parameters}
- vtx_id (int) - The vertex identifier.

Returns complex identifier or None if vtx_id has no parent.
Return Type int
complex_at_scale (vtx_id, scale)
Returns the complex of \(v t x \_i d\) at scale scale.

\section*{Parameters}
- vtx_id: The vertex identifier.
- scale: The scale identifier.

Returns vertex identifier
Returns Type int
```

component_roots(vtx_id)

```

Return the set of roots of the tree graphs that compose a vertex.
```

component_roots_at_scale(vtx_id, scale)

```

Return the list of roots of the tree graphs that compose a vertex.
```

component_roots_at_scale_iter(vtx_id,scale)

```

Return the set of roots of the tree graphs that compose a vertex.
```

component_roots_iter(vtx_id)

```

Return an iterator of the roots of the tree graphs that compose a vertex.
```

components (vid)

```
returns the components of a vertex
Parameters vid - The vertex identifier.
Returns list of vertex identifier
```

components_at_scale(vid, scale)

```
returns a vertex iterator

\section*{Parameters}
- vid: The vertex identifier.

Returns iter of vertex identifier
components_at_scale_iter(vid, scale)
returns a vertex iterator

\section*{Parameters}
- vid: The vertex identifier.

Returns iter of vertex identifier
components_iter (vid)
returns a vertex iterator
Parameters vid - The vertex identifier.
Returns iter of vertex identifier
copy ()
Return a copy of the graph.

\section*{Returns}
- \(g\) (MTG) - A copy of the MTG
display (max_scale=0, display_id=True, display_scale \(=\) False, \(n b \_t a b=12, * * k w d s\) )
Print an MTG on the console.

\section*{Optional Parameters}
- max_scale: do not print vertices of scale greater than max_scale
- display_id: display the vid of the vertices
- display_scale: display the scale of the vertices
- \(n b \_t a b\) : display the MTG using nb_tab columns
edge_type (vid)
Type of the edge between a vertex and its parent.
The different values are '<' for successor, and ' + ' for ramification.
```

edges (scale=-1)

```

\section*{Parameters}
- scale (int) - Scale at which to iterate.

Returns Iterator on the edges of the MTG at a given scale or on all edges if scale \(<0\).
Returns Type iter
forward_rewriting_traversal()
get_root()
Return the tree root.
Returns vertex identifier
get_vertex_property (vid)
Returns all the properties defined on a vertex.
graph_properties()
return a dict containing the graph properties/
Return type dict of \{property_name: data\}
has_vertex (vid)
Tests whether a vertex belongs to the graph.

\section*{Parameters}
- vid (int) - vertex id to test

Returns Type bool
index (vid)
Index of a vertex
The Index of a vertex is a feature always defined and independent of time (like the index). It is represented by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and its index. The label thus provides general information about a vertex and enables us to encode the plant components.
insert_parent (vtx_id, parent_id=None, **properties)
Insert parent_id between vtx_id and its actual parent. Inherit of the complex of the parent of vtx_id.

\section*{Parameters}
- \(v t x \_i d\) (int): a vertex identifier
- parent_id (int): a vertex identifier

Returns Identifier of the inserted vertex (parent_id).
Returns Type int
insert_scale (inf_scale=None, partition=None, default_label=None, preserve_order=True)
Add a scale to MTG

\section*{Parameters}
- inf_scale (int) - New scale is inserted between inf_scale and inf_scale-1
- partition (lambda v: bool) - Function defining new scale by quotienting vertices at inf_scale
- default_label (str) - default label of inserted vertices
- preserve_order (bool) - True iif children at new scale are ordered consistently with children at inf_scale

Returns MTG with inserted scale

\section*{Remark}
- New scale is inserted in self as well.
- function partition should return True at roots of subtrees where partition changes and False elsewhere.
insert_sibling (vtx_idl, vtx_id2=None, **properties)
Insert a sibling of vtk_id1. The vertex in inserted before vtx_id1.

\section*{Parameters}
- vtx_idl (int) : a vertex identifier
- vtx_id2 (int) : the vertex to insert

Returns Identifier of the inserted vertex (vtx_id2)
Returns Type int
insert_sibling_tree (vid, tree)
Insert a tree before the vid. vid and the root of the tree are siblings. Complexity have to be \(O(1)\) if tree comes from the actual tree ( tree= self.sub_tree() )

\section*{Parameters}
- vid - vertex identifier
- tree - a rooted tree
is_leaf (vtx_id)
Test if \(v t x \_i d\) is a leaf.
Returns bool
is_valid()
Tests the validity of the graph. Currently always returns True.
Returns Type bool
Todo Implement this function.
iter_edges \((\) scale \(=-1\) )
Parameters
- scale (int) - Scale at which to iterate.

Returns Iterator on the edges of the MTG at a given scale or on all edges if scale \(<0\).
Returns Type iter
iteredges (scale=-1)
Iter on the edges of the tree.
label (vid)
Label of a vertex.
Usage
>>> g.label(v)

\section*{Parameters}
- vid (int) : vertex of the MTG

Returns The class and Index of the vertex (str).

\section*{See also:}

MTG(), index(), class_name()
max_scale()
Return the max scale identifier.
By convention, the mtg contains scales in \([0\), max_scale].
Usage
```

>>> print g.max_scale()

```

Returns S, the maximum scale identifier.

Note: The complexity is \(O(n)\).

\section*{See also:}
scale(), scales()
nb_children (vtx_id)
returns the number of children

\section*{Parameters}
- vtx_id: The vertex identifier.

Returns int
nb_components (vid)
returns the number of components

\section*{Parameters}
- vid: The vertex identifier.

Returns int
nb_scales ()
Returns The number of scales defined in the mtg..
Returns Type int

Note: The complexity is \(O(n)\).
nb_siblings (vtx_id)
returns the number of siblings
Returns int
nb_vertices (scale=-l)
Returns the number of vertices.

\section*{Usage}
```

>>> g.nb_vertices()
100
>>> g.nb_vertices(scale=3)
68

```

\section*{Parameters}
- scale (int) - Id of scale for which to count vertices.

Returns Number of vertices at scale or total number of vertices if scale \(<0\).
node (vid, klass=None)
Return a node associated to the vertex vid.
It allows to access to the properties with an object oriented interface.

\section*{Example}
```

node = g.node(1)
print node.edge_type
print node.label
node.label = 'B'
print g.label(1)

```
```

print node.parent
print list(node.children)

```
order (vl)
Order of a vertex in a graph.
The order of a vertex in a graph is the number of ' + ' edges crossed when going from \(v 1\) 'to ' \(v 2\).
If \(v 2\) is None, the order of \(v 1\) correspond to the order of \(v 1\) with respect to the root.
parent (vtx_id)
Return the parent of \(v t x \_i d\).

\section*{Parameters}
- vtx_id: The vertex identifier.

Returns vertex identifier

\section*{plot_property (prop, **kwds)}

Plot properties of MTG using matplotlib

\section*{Example}
```

>>> g.plot_property('length')

```

\section*{properties()}

Returns all the property maps contain in the graph.
property (name)
Returns the property map between the vid and the data. :returns: dict of \{vid:data\}
property_names()
names of all property maps. Properties are defined only on vertices, even edge properties. return iter of names
property_names_iter()
iter on names of all property maps. Properties are defined only on vertices, even edge properties. return iter of names
reindex (mapping=None, copy=False)
Assign a new identifier to each vertex.
This method assigns a new identifier to each vertex of the MTG. The mapping can be user defined or is implicit (mapping). This method modify the MTG in place or return a new MTG (copy).

\section*{Usage}
```

>>> g.reindex()
>>> g1 = g.reindex(copy=True)
>>> mymap = dict(zip(list(traversal.iter_mtg2(g,g.root)), range(len(g))))
>>> g2 = g.reindex(mapping=mymap, copy=True)

```

\section*{Optional Parameters}
- mapping (dict): define a mapping between old and new vertex identifiers.
- copy (bool) : modify the object in place or return a new MTG.

\section*{Returns}
- a MTG

Background MTGs ()

\section*{See also:}
sub_mtg()
remove_property (property_name)
Remove the property map called property_name from the graph.
remove_scale (scale)
Remove all the vertices at a given scale.
The upper and lower scale are then connected.
- scale : the scale that have to be removed

\section*{Returns}
- - \(\mathbf{g}\) (the input MTG modified in place.)
- - results (a list of dict) - all the vertices that have been removed
remove_tree (vtx_id)
Remove the sub tree rooted on \(v t x \_i d\).
Returns bool
remove_vertex (vid, reparent_child=False)
Remove a specified vertex of the graph and remove all the edges attached to it.

\section*{Parameters}
- vid (int) : the id of the vertex to remove
- reparent_child (bool) : reparent the children of vid to its parent.

\section*{Returns None}
replace_parent (vtx_id, new_parent_id, **properties)
Change the parent of vtx_id to new_parent_id. The new parent of vtx_id is new_parent_id. vtx_id and new_parent_id must have the same scale.

This function do not change the edge_type between vtx_id and its parent.
Inherit of the complex of the parent of vtx_id.

\section*{Parameters}
- vtx_id (int): a vertex identifier
- new_parent_id (int): a vertex identifier

\section*{Returns None}
roots \((\) scale \(=0)\)
Returns a list of the roots of the tree graphs at a given scale.
In an MTG, the MTG root vertex, namely the vertex g.root, can be decomposed into several, nonconnected, tree graphs at a given scale. This is for example the case of an MTG containing the description of several plants.

Usage roots \(=\) g.roots \((\) scale \(=\) g.max_scale ()
Returns list on vertex identifiers of root vertices at a given scale.

Returns Type list of vid

roots_iter (scale=0)
Returns an iterator of the roots of the tree graphs at a given scale.
In an MTG, the MTG root vertex, namely the vertex g.root, can be decomposed into several, nonconnected, tree graphs at a given scale. This is for example the case of an MTG containing the description of several plants.

Usage roots \(=\) list \(\left(\mathrm{g}\right.\). roots \(\left(\right.\) scale \(=\mathrm{g} . \max \_\)scale ()\()\)
Returns iterator on vertex identifiers of root vertices at a given scale.
Returns Type iter

```

scale (vid)

```

Returns the scale of a vertex.
All vertices should belong to a given scale.
Usage
g.scale(vid)

\section*{Parameters}
- vid (int) - vertex identifier.

Returns The scale of the vertex. It is a positive int in [0,g.max_scale()].

\section*{scales()}

Return the different scales of the mtg.
Returns Iterator on scale identifiers (ints).

Note: The complexity is \(O(n)\).
scales_iter()
Return the different scales of the mtg.
Returns Iterator on scale identifiers (ints).

Note: The complexity is \(O(n)\).
set_root (vtx_id)
Set the tree root.
Parameters vtx_id - The vertex identifier.
siblings (vtx_id)
returns an iterator of vtx_id siblings. vtx_id is not include in siblings.

\section*{Parameters}
- vtx_id: The vertex identifier.

Returns iter of vertex identifier
siblings_iter (vtx_id)
returns an iterator of vtx_id siblings. vtx_id is not include in siblings.

\section*{Parameters}
- vtx_id: The vertex identifier.

Returns iter of vertex identifier
sub_mtg (vtx_id, copy=True)
Return the submtg rooted on \(v t x \_i d\).
The induced sub mtg of the mtg are all the vertices which have vtx_id has a complex plus vtx_id.

\section*{Parameters}
- vtx_id: A vertex of the original tree.
- copy: If True, return a new tree holding the subtree. If False, the subtree is created using the original tree by deleting all vertices not in the subtree.
Returns A sub mtg of the mtg. If copy=True, a new MTG is returned. Else the sub mtg is created inplace by modifying the original tree.
sub_tree (vtx_id, copy=True)
Return the subtree rooted on \(v t x \_i d\).
The induced subtree of the tree has the vertices in the ancestors of vtx_id.

\section*{Parameters}
- vtx_id: A vertex of the original tree.
- copy: If True, return a new tree holding the subtree. If False, the subtree is created using the original tree by deleting all vertices not in the subtree.
Returns A sub tree of the tree. If copy=True, a new Tree is returned. Else the subtree is created inplace by modifying the original tree.
vertices (scale \(=-1\) )
Return a list of the vertices contained in an MTG.
The set of all vertices in the MTG is returned. Vertices from all scales are returned if no scale is given. Otherwise, it returns only the vertices of the given scale. The order of the elements in this array is not significant.

Usage
```

g = MTG()
len(g) == len(list(g.vertices()))
for vid in g.vertices(scale=2):
print g.class_name(vid)

```

\section*{Optional Parameters}
- scale (int): used to select vertices at a given scale.

Returns Iterator on vertices at "scale" or on all vertices if scale \(<0\).
Returns Type list of vid

\section*{Background}

\section*{See also:}
children(), components(), vertices_iter()..
vertices_iter (scale=-1)
Return an iterator of the vertices contained in an MTG.
The set of all vertices in the MTG is returned. Vertices from all scales are returned if no scale is given. Otherwise, it returns only the vertices of the given scale. The order of the elements in this array is not significant.

\section*{Usage}
```

g = MTG()
len(g) == len(list(g.vertices()))
for vid in g.vertices(scale=2):
print g.class_name(vid)

```

\section*{Optional Parameters}
- scale (int): used to select vertices at a given scale.

Returns Iterator on vertices at "scale" or on all vertices if scale \(<0\).
Returns Type iter of vid

\section*{Background}

\section*{See also:}
```

children(), components().

```
root

Return the tree root.
Returns vertex identifier
openalea.mtg.mtg.simple_tree (tree, vtx_id, nb_children=3, nb_vertices=20)
Generate and add a regular tree to an existing one at a given vertex.
Add a regular tree at a given vertex id position vtx_id. The length of the sub_tree is \(n b \_\)vertices. Each new vertex has at most nb_children children.

\section*{Parameters}
- tree: the tree thaat will be modified
- vtx_id (id): vertex on which the sub tree will be added.
- nb_children (int) : number of children that are added to each vertex
- nb_vertices (int) : number of vertices to add

Returns The modified tree

\section*{Examples}
```

g = MTG()
vid = g.add_component(g.root)
simple_tree(g, vid, nb_children=2, nb_vertices=20)
print len(g) \# 22

```

\section*{See also:}
```

 random_tree(),random_mtg()
    ```
openalea.mtg.mtg.random_tree ( mtg , root, \(n b \_\)children \(=3\), nb_vertices \(=20\) )
Generate and add a random tree to an existing one.
Add a random sub tree at a given vertex id position root. The length of the sub_tree is \(n b \_\)vertices. The number of children for each vertex is sampled according to \(n b\) _children distribution. If nb_children is an interger, the random distribution is uniform between [1, nb_children]. Otherwise, you can give your own discrete distribution sampling function.

\section*{Parameters}
- mtg: the mtg to modified
- root (id): vertex id on which the sub tree will be added.

\section*{Optional Parameters}
- nb_vertices
- nb_children : an int or a discrete distribution sampling function.

Returns The last added vid.

\section*{Examples}
```

g = MTG()
vid = g.add_component(g.root)
random_tree(g, vid, nb_children=2, nb_vertices=20)
print len(g) \# 22

```

\section*{See also:}
simple_tree(), random_mtg()
openalea.mtg.mtg.random_mtg (tree, nb_scales)
Convert a tree into an MTG of \(n b_{-}\)scales.
Add a random sub tree at a given vertex id position root. The length of the sub_tree is nb_vertices. Each new vertex has at most \(n b\) _children children.

\section*{Parameters}
- mtg: the mtg to modified
- root (id): vertex id on which the sub tree will be added.

Returns The last added vid.

\section*{Examples}
```

g = MTG()
random_tree(g, g.root, nb_children=2, nb_vertices=20)
print len(g) \# 21

```

\section*{See also:}
```

simple_tree(),random_tree()

```
openalea.mtg.mtg.colored_tree (tree, colors)
Compute a mtg from a tree and the list of vertices to be quotiented.

Note: The tree has to be a real tree and not an MTG

\section*{Example}
```

from random import randint, sample
g = MTG()
random_tree(g, g.root, nb_vertices=200)

At each scale, define the vertices which will define a complex

nb_scales=4
colors = {}
colors[3] = g.vertices()
colors[2] = random.sample(colors[3], randint(1,len(g)))
colors[2].sort()
if g.root not in colors[2]:
colors[2].insert(0, g.root)
colors[1] = [g.root]
g, mapping = colored_tree(g, colors)

```
openalea.mtg.mtg.display_tree (tree, vid, tab=", labels=\{\}, edge_type=\{\})
Display a tree structure.
openalea.mtg.mtg.display_mtg (mtg, vid)
Display an MTG
..todo:: Write doc.
Download the source file . . / . / src/mtg/mtg.py.

\subsection*{4.2 High level reporting function compatible with AML}

Interface to use the new MTG implementation with the old AMAPmod interface.
openalea.mtg.aml.Activate (g)
Activate a MTG already loaded into memory
All the functions of the MTG module use an implicit MTG argument which is defined as the active MTG.
This function activates a MTG already loaded into memory which thus becomes the implicit argument of all functions of module MTG.

Usage
>>> Activate(g)

\section*{Parameters}
- \(g\) : MTG to be activated

Details When several MTGs are loaded into memory, only one is active at a time. By default, the active MTG is the last MTG loaded using function \(M T G()\).

However, it is possible to activate an MTG already loaded using function Activate () The current active MTG can be identified using function Active ().

Background MTG()

\section*{See also:}

MTG()
openalea.mtg.aml.Active()
Returns the active MTG.
If no MTG is loaded into memory, None is returned.

\section*{Usage}
```

>>> Active()

```

\section*{Returns}
- MTG()

Details When several MTGs are loaded into memory, only one is active at a time. By default, the active MTG is the last MTG loaded using function MTG (). However, it is possible to activate an MTG already loaded using function Activate (). The current active MTG can be identified using function Active ().

\section*{See also:}

MTG(), Activate().
openalea.mtg.aml.AlgHeight (v1, v2)
Algebraic value defining the number of components between two components.
This function is similar to function \(\operatorname{Height}(v 1, v 2)\) : it returns the number of components between two components, at the same scale, but takes into account the order of vertices \(v 1\) and \(v 2\).

The result is positive if \(v 1\) is an ancestor of \(v 2\), and negative if \(v 2\) is ancestor of \(v 1\).

\section*{Usage}

AlgHeight (v1, v2)

\section*{Parameters}
- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int
If \(v 1\) is not an ancestor of \(v 2\) (or vise versa), or if \(v 1\) and \(v 2\) are not defined at the same scale, an error value None is returned.

\section*{See also:}

MTG(), Rank(), Order(), Height (), EdgeType(), AlgOrder(), AlgRank().
openalea.mtg.aml.AlgOrder ( \(v 1, v 2\) )
Algebraic value defining the relative order of one vertex with respect to another one.
This function is similar to function \(\operatorname{Order}(v 1, v 2)\) : it returns the number of +-type edges between two components, at the same scale, but takes into account the order of vertices \(v 1\) and \(v 2\).
The result is positive if \(v 1\) is an ancestor of \(v 2\), and negative if \(v 2\) is an ancestor of \(v 1\).

\section*{Usage}

AlgOrder (v1, v2)

\section*{Parameters}
- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int
If \(v 1\) is not an ancestor of \(v 2\) (or vise versa), or if \(v 1\) and \(v 2\) are not defined at the same scale, an error value None is returned.

\section*{See also:}

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgRank().
openalea.mtg.aml.AlgRank (v1, v2)
Algebraic value defining the relative rank of one vertex with respect to another one.
This function is similar to function \(\operatorname{Rank}(v 1, v 2)\) : it returns the number of <-type edges between two components, at the same scale, but takes into account the order of vertices \(v 1\) and \(v 2\).

The result is positive if \(v 1\) is an ancestor of \(v 2\), and negative if \(v 2\) is ancestor of \(v 1\).

Usage
```

AlgRank(v1, v2)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int
If \(v 1\) is not an ancestor of \(v 2\) (or vise versa), or if \(v 1\) and \(v 2\) are not defined at the same scale, an error value None is returned.

\section*{See also:}
```

MTG(), Rank(),Order(),Height(), EdgeType(), AlgHeight(), AlgOrder().

```
openalea.mtg.aml.Alpha (el, e2)
openalea.mtg.aml. Ancestors (v, EdgeType \(=\) '*', RestrictedTo \(=\) 'NoRestriction', ContainedIn=None)
Array of all vertices which are ancestors of a given vertex
This function returns the array of vertices which are located before the vertex passed as an argument. These vertices are defined at the same scale as \(v\). The array starts by \(v\), then contains the vertices on the path from \(v\) back to the root (in this order) and finishes by the tree root.

Note: The anscestor array always contains at least the argument vertex \(v\).

\section*{Usage}

Ancestors (v)

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father
- EdgeType (str): cf. Father

Returns list of vertices's id (int)

\section*{Examples}
```

>>> v \# prints vertex v
78
>>> Ancestors(v) \# set of ancestors of v at the same scale
[78,45,32,10,4]
>>> list(reversed(Ancestors(v))) \# To get the vertices in the order from the root,
\hookrightarrowto the vertex V
[4,10,32,45,78]

```

\section*{See also:}

MTG(), Descendants().
openalea.mtg.aml.Axis (v, Scale \(=-1\) )
Array of vertices constituting a botanical axis
An axis is a maximal sequence of vertices connected by ' \(<\) '-type edges. Axis return the array of vertices representing the botanical axis which the argument v belongs to. The optional argument enables the user to choose the scale at which the axis decomposition is required.

\section*{Usage}

Axis(v)
Axis(v, Scale=s)

\section*{Parameters}
- v (int) : Vertex of the active MTG

\section*{Optional Parameters}
- Scale (str): scale at which the axis components are required.

Returns list of vertices ids


\section*{See also:}

MTG(), Path(), Ancestors().
```

openalea.mtg.aml.Beta(e1,e2)
openalea.mtg.aml.BottomCoord(e1,e2)
openalea.mtg.aml.BottomDiameter (el,e2)
openalea.mtg.aml.Class (vid)

```

\section*{Class of a vertex}

The Class () of a vertex is a feature always defined and independent of time (like the index). It is represented by an alphabetic character in upper or lower case (lower cases characters are considered different from upper
cases). The label of a vertex is the string defined by the concatenation of its class and its index. The label thus provides general information about a vertex and enables us to encode the plant components.

\section*{Usage}
```

>>> Class(v)

```

\section*{Parameters}
- vid (int) : vertex of the active MTG

Returns The class of the vertex.

\section*{See also:}

MTG(), Index(), Scale().
openalea.mtg.aml.ClassScale (c)
Scale at which appears a given class of vertex
Every vertex is associated with a unique class. Vertices from a given class only appear at a given scale which can be retrieved using this function.

\section*{Usage}
```

ClassScale(c)

```

\section*{Parameters}
- \(c\) (str) : symbol of the considered class

Returns int

\section*{See also:}

MTG(), Class(), Scale(), Index().
openalea.mtg.aml.Complex ( \(v\), Scale \(=-1\) )
Complex of a vertex.
Returns the complex of \(v\). The complex of a vertex \(v\) has a scale lower than \(v: \operatorname{Scale}(v)-1\). In a MTG, every vertex except for the MTG root (cf. MTGRoot), has a uniq complex. None is returned if the argument is the MTG Root or if the vertex is undefined.

\section*{Usage}
```

Complex(v)
Complex(v, Scale=2)

```

\section*{Parameters}
- \(v\) (int) : vertex of the active MTG

\section*{Optional Parameters}
- Scale (int) : scale of the complex

Returns Returns vertex's id (int)
Details When a scale different form Scale(v)-1 is specified using the optional parameter Scale, this scale must be lower than that of the vertex argument.

Todo: Complex(v, Scale=10) returns v why ? is this expected

\section*{See also:}

MTG(), Components ().
openalea.mtg.aml.ComponentRoots (v, Scale \(=-1\) )
Set of roots of the tree graphs that compose a vertex
In a MTG, a vertex may have be decomposed into components. Some of these components are connected to each other, while other are not. In the most general case, the components of a vertex are organized into several tree-graphs. This is for example the case of a MTG containing the description of several plants: the MTG root vertex can be decomposed into tree graphs (not connected) that represent the different plants. This function returns the set of roots of these tree graphs at scale \(\operatorname{Scale}(v)+1\). The order of these roots is not significant.
When a scale different from \(\operatorname{Scale}(v)+l\) is specified using the optional argument \(S c a l e()\), this scale must be greater than that of the vertex argument.

\section*{Usage}

ComponentRoots (v)
ComponentRoots (v, Scale=s)

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- Scale (str): scale of the component roots.

Returns list of vertices's id (int)

\section*{Examples}
```

>>> v=MTGRoot() \# global MTG root
0
>>> ComponentRoots(v) \# set of first vertices at scale I
[1,34,76,100,199,255]
>>> ComponentRoots(v, Scale=2) \# set of first vertices at scale 2
[2,35,77,101,200, 256]

```


\section*{See also:}

MTG(), Components(), Trunk().
openalea.mtg.aml. Components ( \(v\), Scale \(=-1\) )
Set of components of a vertex.
The set of components of a vertex is returned as a list of vertices. If \(\mathbf{s}\) defines the scale of \(\mathbf{v}\), components are defined at scale \(\mathbf{s}+1\). The array is empty if the vertex has no components. The order of the components in the array is not significant.

When a scale is specified using optional argument :arg:Scale, it must be necessarily greater than the scale of the argument.

Usage
```

Components(v)
Components(v, Scale=2)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- Scale (int) : scale of the components.

Returns list of int


See also:
MTG(), Complex().
openalea.mtg.aml.Coord (el, e2)
openalea.mtg.aml.DateSample (el)
Array of observation dates of a vertex.
Returns the set of dates at which a given vertex (passed as an argument) has been observed as an array of ordered dates. Options can be specified to define a temporal window and the total list of observation dates will be truncated according to the corresponding temporal window.

Usage
```

DateSample(v)
DateSample(v, MinDate=d1, MaxDate=d2)

```

\section*{Parameters}
- v (VTX) : vertex of the active MTG.

\section*{Optional Parameters}
- MinDate (date) : defines a minimum date of interest.
- MaxDate (date) : defines a maximum date of interest.

Returns list of date

\section*{See also:}

MTG(), FirstDefinedFeature(), LastDefinedFeature(), PreviousDate(), NextDate (). openalea.mtg.aml.Defined (vid)

Test whether a given vertex belongs to the active MTG.
Usage
```

Defined(v)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

Returns True or False

\section*{See also:}

MTG().
openalea.mtg.aml.Descendants (v, EdgeType='*', RestrictedTo='NoRestriction', ContainedIn=None)
Set of vertices in the branching system borne by a vertex.
This function returns the set of descendants of its argument as an array of vertices. The array thus consists of all the vertices, at the same scale as \(v\), that belong to the branching system starting at \(v\). The order of the vertices in the array is not significant.

Note: The argument always belongs to the set of its descendants.

\section*{Usage}
```

Descendants(v)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father
- EdgeType (str): cf. Father

Returns list of int.

\section*{Examples}
```

>>> v
78
>>> Sons(v) \# set of sons of v
[78,99,101]
>>> Descendants(v) \# set of descendants of v
[78,99,101,121,133,135,156,171,190]

```


\section*{See also:}

MTG(), Ancestors().
openalea.mtg.aml.DressingData(el)
Use openalea.mtg.dresser.DressingData instead of this function
```

openalea.mtg.aml.EdgeType ($v 1, v 2$)

```

Type of connection between two vertices.
Returns the symbol of the type of connection between two vertices (either \(<\) or + ). If the vertices are not connected, None is returned.

\section*{Usage}
```

EdgeType(v1, v2)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns '<' (successor), '+' (branching) or None


\section*{See also:}

MTG(), Sons(), Father().
openalea.mtg.aml.Extremities ( \(v\), RestrictedTo='NoRestriction', ContainedIn=None)
Set of vertices that are the extremities of the branching system born by a given vertex.
This function returns the extremities of the branching system defined by the argument as a list of vertices. These vertices have the same scale as \(v\) and their order in the list is not signifiant. The result is always a non empty array.

\section*{Usage}
```

Extremities(v)

```

\section*{Properties}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father ()
- ContainedIn (int): cf. Father ()

Returns list of vertices's id (int)

\section*{Examples}
```

>>> Descendants(v)
[3, 45, 47, 78, 102]
>>> Extremities(v)
[47, 102]

```

\section*{See also:}
```

MTG(),Descendants(),Root(),MTGRoot().

```
openalea.mtg.aml.Father (v, EdgeType='*', RestrictedTo='NoRestriction', ContainedIn=None, Scale=-1)
Topological father of a given vertex.
Returns the topological father of a given vertex. And None if the father does not exist. If the argument is not a valid vertex, None is returned.

\section*{Usage}
```

Father(v)
Father(v, EdgeType='<')
Father(v, RestrictedTo='SameComplex')
Father(v, ContainedIn=complex_id)
Father(v, Scale=s)

```

Parameters v (int) : vertex of the active MTG
Optional Parameters If no optional argument is specified, the function returns the topological father of the argument (vertex that bears or precedes to the vertex passed as an argument).

It may be usefull in some cases to consider that the function only applies to a subpart of the MTG (e.g. an axis).

The following options enables us to specify such restrictions:
- EdgeType (str) : filter on the type of edge that connect the vertex to its father.

Values can be '<', '+', and '*'. Values '*' means both ' \(<\) ' and '+'. Only the vertex connected with the specified type of edge will be considered.
- RestrictedTo (str) : filter defining a subpart of the MTG where the father must be considered. If the father is actually outside this subpart, the result is None. Possible subparts are defined using keywords in ['SameComplex', 'SameAxis', 'NoRestriction'].
For instance, if RestrictedTo is set to 'SameComplex', Father (v) () returns a defined vertex only if the father \(f\) of \(v\) existsin the MTG and if \(v\) and \(f\) have the same complex.
- ContainedIn (int) : filter defining a subpart of the MTG where the father must be considered. If the father is actually outside this subpart, the result is None.

In this case, the subpart of the MTG is made of the vertices that composed composite_id (at any scale).
- Scale (int) : the scale of the considered father. Returns the vertex from scale \(s\) which either bears and precedes the argument.

The scale \(s\) can be lower than the argument's (corresponding to a question such as 'which axis bears the internode?') or greater (e.g. 'which internodes bears this annual shoot?').

Returns the vertex id of the Father (int)

\section*{See also:}

MTG(), Defined(), Sons(), EdgeType(), Complex(), Components().
openalea.mtg.aml.Feature (vid, fname, date=None)
Extracts the attributes of a vertex.
Returns the value of the attribute fname of a vertex in a \(M T G\).
If the value of an attribute is not defined in the coding file, the value None is returned.

\section*{Usage}
```

Feature(vid, fname)

```

Feature(vid, fname, date)

\section*{Parameters}
- \(\operatorname{vid}(i n t):\) vertex of the active MTG.
- fname (str) : name of the attribute (as specified in the coding file).
- date (date) : (for a dynamic \(M T G\) ) date at which the attribute of the vertex is considered.

Returns int, str, date or float
Details If for a given attribute, several values are available(corresponding to different dates), the date of interest must be specified as a third attribute.

This date must be a valid date appearing in the coding file for a considered vertex. Otherwise None is returned.

Background MTGs and Dynamic MTGs.

Todo: specify the format of date

\section*{See also:}

MTG(), Class(), Index(), Scale().
openalea.mtg.aml.FirstDefinedFeature (el, e2)
Date of first observation of a vertex.
Returns the date \(d\) for which the attribute fname is defined for the first time on the vertex \(v\) passed as an argument. This date must be greater than the option MinDate and/or less than the maximum MaxData when specified. Otherwise the returned date is None.

\section*{Usage}

FirstDefinedFeature (v, fname)
FirstDefinedFeature(v, fname, MinDate=d1, MaxDate=d2)

\section*{Properties}
- v (int) : vertex of the active MTG
- fname (str) : name of the considered property

\section*{Optional Properties}
- MinDate (date) : minimum date of interest.
- MaxData (date) : maximum date of interest.

Returns date

\section*{See also:}

MTG(), DateSample(), LastDefinedFeature(), PreviousDate(), NextDate().
openalea.mtg.aml. Height ( \(v 1, v 2=\) None)
Number of components existing between two components in a tree graph.

The height of a vertex ( \(v 2\) ) with respect to another vertex ( \(v 1\) ) is the number of edges (of either type ' + ' or '<') that must be crossed when going from \(v 1\) to \(v 2\) in the graph.

This is a non-negative integer. When the function has only one argument \(v l\), the height of \(v l\) correspond to the height of \(v 1\) 'with respect to the root of the branching system containing ' \(v 1\).

Usage
```

Height(v1)
Height(v1, v2)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that one is an ancestor of the other. When the order is relevant, use function AlgHeight.

\section*{See also:}
```

MTG(),Order(), Rank(), EdgeType(), AlgHeight(), AlgHeight(), AlgOrder().

```
openalea.mtg.aml.Index (vid)
Index of a vertex
The Index () of a vertex is a feature always defined and independent of time (like the index). It is represented by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and its index. The label thus provides general information about a vertex and enables us to encode the plant components.

\section*{Usage}
```

>>> Index(v)

```

\section*{Parameters}
- vid (int) : vertex of the active MTG

Returns int

\section*{See also:}

MTG(), Class(), Scale()
openalea.mtg.aml.Label (v)
Label of a vertex

\section*{Usage}
```

>>> Label(v) \#doctest: +SKIP

```

\section*{Parameters}
- vid (int) : vertex of the active MTG

Returns The class and Index of the vertex (str).

\section*{See also:}

MTG(), Index(), Class()
openalea.mtg.aml.LastDefinedFeature (e1, e2)
Date of last observation of a given attribute of a vertex.
Returns the date \(d\) for which the attribute fname is defined for the last time on the vertex \(v\) passed as an argument. This date must be greater than the option MinDate and/or less than the maximum MaxData when specified. Otherwise the returned date is None.

\section*{Usage}

FirstDefinedFeature(v, fname)
FirstDefinedFeature(v, fname, MinDate=d1, MaxDate=d2)

\section*{Properties}
- v (int) : vertex of the active MTG
- fname (str) : name of the considered property

\section*{Optional Properties}
- MinDate (date) : minimum date of interest.
- MaxData (date) : maximum date of interest.

Returns date

\section*{See also:}

MTG(), DateSample(), FirstDefinedFeature(), PreviousDate(), NextDate().
openalea.mtg.aml.Length (e1, e2)
openalea.mtg.aml.Location ( \(v\), Scale \(=-1\), ContainedIn=None)
Vertex defining the father of a vertex with maximum scale.
If no options are supplied, this function returns the vertex defining the father of a vertex with maximum scale (cf. Father ()). If it does not exist, None is returned. If a scale is specified, the function is equivalent to Father (v, Scale=s).

\section*{Usage}
```

Location(v)
Location(v, Scale=s)
Location(v, ContainedIn=complex_id)

```

\section*{Parameters}
- v (int) : vertex of the active MTG.

\section*{Optional Parameters}
- Scale (int) : scale at which the location is required.
- ContainedIn (int) : cf. Father ()

Returns Returns vertex's id (int)
Examples
```

>>> Father(v, EdgeType='+')
7
>>> Complex(v)
4
>>> Components (7)
[9,19,23, 34, 77, 89]
>>> Location(v)
23
>>> Location(v, Scale= Scale(v)+1)
23
>>> Location(v, Scale= Scale(v))
7
>>> Location(v, Scale= Scale(v)-1)
4

```

\section*{See also:}

MTG(), Father ().
openalea.mtg.aml.MTG (filename)
MTG constructor.
Builds a MTG from a coding file (text file) containing the description of one or several plants.

\section*{Usage}
```

MTG(filename)

```

\section*{Parameters}
- filename (str): name of the coding file describing the mtg

Returns If the parsing process succeeds, returns an object of type \(M T G\) (). Otherwise, an error is generated, and the formerly active \(M T G\) remains active.
Side Effect If the \(M T G\) () is built, the new \(M T G()\) becomes the active \(M T G\) () (i.e. the \(M T G\) () implicitly used by other functions such as Father(), Sons (), VtxList (), ...).

Details The parsing process is approximatively proportional to the number of components defined in the coding file.

Background MTG is an acronyme for Multiscale Tree Graph.

\section*{See also:}

Activate() and allopenalea.mtg.aml functions.
openalea.mtg.aml.MTGRoot()
Returns the root vertex of the MTG.
It is the only vertex at scale 0 (the coarsest scale).

\section*{Usage}
```

>>> MTGRoot()

```

\section*{Returns}
- vtx identifier

Details This vertex is the complex of all vertices from scale 1. It is a mean to refer to the entire database.

\section*{See also:}

MTG(), Complex(), Components(), Scale().
openalea.mtg.aml.NextDate (el)
Next date at which a vertex has been observed after a specified date
Returns the first observation date at which the vertex has been observed starting at date \(d\) and proceeding forward in time. None is returned if it does not exists.

\section*{Usage}
```

NextDate(v, d)

```

\section*{Parameters}
- v (int) : vertex of the active MTG.
- d (date) : departure date.

Returns date

\section*{See also:}

MTG(), DateSample(), FirstDefinedFeature(), LastDefinedFeature(), PreviousDate().
```

openalea.mtg.aml.Order (v1,v2=None)

```

Order of a vertex in a graph.
The order of a vertex ( \(v 2\) ) with respect to another vertex ( \(v 1\) ) is the number of edges of either type ' + ' that must be crossed when going from \(v 1\) to \(v 2\) in the graph. This is thus a non negative integer which corresponds to the "botanical order".

When the function only has one argument \(v l\), the order of \(v l\) correspond to the order of \(v l\) with respect to the root of the branching system containing \(v l\).

\section*{Usage}
```

Order(v1)
Order(v1, v2)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that one is an ancestor of the other. When the order is relevant, use function AlgOrder().

Warning: The value returned by function Order is 0 for trunks, 1 for branches etc. This might be different with some botanical conventions where 1 is the order of the trunk, 2 the order of branches, etc.

\section*{See also:}

MTG(), Rank(), Height(), EdgeType(), AlgOrder(), AlgRank(), AlgHeight ().
openalea.mtg.aml. \(\operatorname{PDir(el,e2)}\)
openalea.mtg.aml.Path (v1, v2)
List of vertices defining the path between two vertices
This function returns the list of vertices defining the path between two vertices that are in an ancestor relationship. The vertex \(v 1\) must be an ancestor of vertex \(v 2\). Otherwise, if both vertices are valid, then the empty array is returned and if at least one vertex is undefined, None is returned.

\section*{Usage}
```

Path(v1, v2)

```

\section*{Parameters}
- \(v 1\) (int) : vertex of the active MTG
- \(v 2\) (int) : vertex of the active MTG

Returns list of vertices's id (int)

\section*{Examples}
```

>>> v \# print the value of v
78
>>> Ancestors(v)
[78,45,32,10,4]
>>> Path(10,v)
[10,32,45,78]
>> Path(9,v) \# 9 is not an ancestor of }7
[]

```

Note: \(v 1\) can be equal to \(v 2\).


See also:

MTG(), Axis(), Ancestors().
openalea.mtg.aml.PlantFrame (el)
Use openalea.mtg.plantframe.PlantFrame insteead of this function
openalea.mtg.aml.Plot (el)
openalea.mtg.aml.Predecessor ( \(v, * * k w d s\) )
Father of a vertex connected to it by a ' \(<\) ' edge
This function is equivalent to Father(v, EdgeType-> ' \(<\) '). It thus returns the father (at the same scale) of the argument if it is located in the same botanical. If it does not exist, None is returned.

\section*{Usage}
```

Predecessor(v)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns return the vertex id (int)

\section*{Examples}
```

>>> Predecessor(v)
7
>>> Father(v, EdgeType='+')
>>> Father(v, EdgeType-> '<')
7

```

\section*{See also:}

MTG(), Father(), Successor().
openalea.mtg.aml.PreviousDate (el)
Previous date at which a vertex has been observed after a specified date.
Returns the first observation date at which the vertex has been observed starting at date d and proceeding backward in time. None is returned if it does not exists.

Usage
```

PreviousDate(v, d)

```

\section*{Parameters}
- v (int) : vertex of the active MTG.
- d (date) : departure date.

Returns date

\section*{See also:}

MTG(), DateSample(), FirstDefinedFeature(), LastDefinedFeature(), NextDate().
openalea.mtg.aml. \(\operatorname{Rank}(v 1, v 2=N o n e)\)
Rank of one vertex with respect to another one.
This function returns the number of consecutive '<'-type edges between two components, at the same scale, and does not take into account the order of vertices v 1 and v 2 . The result is a non negative integer.

\section*{Usage}
```

Rank(v1)
Rank(v1, v2)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns int
If \(v 1\) is not an ancestor of \(v 2\) (or vise versa) within the same botanical axis, or if \(v 1\) and \(v 2\) are not defined at the same scale, an error value Undef id returned.

\section*{See also:}

MTG(), Order(), Height (), EdgeType(), AlgRank(), AlgHeight(), AlgOrder().
openalea.mtg.aml.RelBottomCoord (el, e2)
openalea.mtg.aml.RelTopCoord (e1, e2)
openalea.mtg.aml.Root (v, RestrictedTo='*', ContainedIn=None)
Root of the branching system containing a vertex
This function is equivalent to Ancestors(v, EdgeType='<')[-1]. It thus returns the root of the branching system containing the argument. This function never returns None.

\section*{Usage}

\section*{Root (v)}

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns return vertex's id (int)
Examples
```

>>> Ancestors(v) \# set of ancestors of V
[102,78,35,33,24,12]
>>> Root(v) \# root of the branching system containing v
12

```


\section*{See also:}

MTG(), Extremities().
openalea.mtg.aml. \(\operatorname{SDir}(e 1, e 2)\)
openalea.mtg.aml.Scale (vid)
Scale of a vertex
Returns the scale at which is defined the argument.

\section*{Usage}
```

>>> Scale(vid)

```

\section*{Parameters}
- vid (int) : vertex of the active MTG
- vid (PlantFrame) : a PlantFrame object computed on the active MTG
- vid (LineTree) : a LineTree computed on a PlantFrame representing the active MTG

Returns int

\section*{See also:}

MTG(), ClassScale(), Class(), Index().
openalea.mtg.aml.Sons (v, RestrictedTo='NoRestriction', EdgeType='*', Scale=-1, ContainedIn=None)
Set of vertices born or preceded by a vertex
The set of sons of a given vertex is returned as an array of vertices. The order of the vertices in the array is not significant. The array can be empty if there are no son vertices.

\section*{Usage}
```

from openalea.mtg.aml import Sons
Sons(v)
Sons(v, EdgeType= '+')
Sons(v, Scale= 3)

```

\section*{Parameters}
- v (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str) : cf. Father
- ContainedIn (int) : cf. Father
- EdgeType (str) : filter on the type of sons.
- Scale (int) : set the scale at which sons are considered.

\section*{Returns list(vid)}

Details When the option EdgeType is applied, the function returns the set of sons that are connected to the argument with the specified type of relation.

Note: Sons(v,EdgeType= ' \(<\) ') is not equivalent to \(\operatorname{Successor}(v)\). The first function returns an array of vertices while the second function returns a vertex.

The returned vertices have the same scale as the argument. However, coarser or finer vertices can be obtained by specifying the optional argument Scale at which the sons are considered.

\section*{Examples}
```

>>> Sons(v)
[3,45,47,78,102]
>>> Sons(v, EdgeType= '+') \# set of vertices borne by V
[3,45,47,102]
>>> Sons(v, EdgeType= '<') \# set of successors of }V\mathrm{ on the same axis
[78]

```

\section*{See also:}

MTG(),Father(), Successor(), Descendants().
openalea.mtg.aml.Successor ( \(v\), RestrictedTo='NoRestriction', ContainedIn=None)
Vertex that is connected to a given vertex by a ' \(<\) ' edge type (i.e. in the same botanical axis).
This function is equivalent to Sons(v, EdgeType='<')[0]. It returns the vertex that is connected to a given vertex by a ' \(<\) ' edge type (i.e. in the same botanical axis). If many such vertices exist, an arbitrary one is returned by the function. If no such vertex exists, None is returned.

\section*{Usage}
```

Successor(v)

```

\section*{Parameters}
- v1 (int) : vertex of the active MTG

\section*{Optional Parameters}
- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns Returns vertex's id (int)

\section*{Examples}
```

>>> Sons(v)
[3, 45, 47, 78, 102]
>>> Sons(v, EdgeType='+') \# set of vertices borne by v
[3, 45, 47, 102]
>>> Sons(v, EdgeType-> '<') \# set of successors of v
[78]
>>> Successor(v)
78

```

\section*{See also:}
```

MTG(),Sons(), Predecessor().

```
openalea.mtg.aml.TopCoord (el,e2)
openalea.mtg.aml.TopDiameter (e1, e2)
openalea.mtg.aml. Trunk ( \(v\), Scale \(=-1\) )

List of vertices constituting the bearing botanical axis of a branching system.
Trunk returns the list of vertices representing the botanical axis defined as the bearing axis of the whole branching system defined by \(v\). The optional argument enables the user to choose the scale at which the trunk should be detailed.

\section*{Usage}
```

Trunk(v)

```
Trunk (v, Scale= s)

\section*{Parameters}
- \(v\) (int) : Vertex of the active MTG.

\section*{Optional Parameters}
- Scale (str): scale at which the axis components are required.

Returns list of vertices ids

Todo: check the usage of the optional argument Scale

\section*{See also:}

MTG(), Path(), Ancestors(), Axis().
openalea.mtg.aml.VirtualPattern(el)
openalea.mtg.aml.VtxList (Scale=-l)
Array of vertices contained in a MTG
The set of all vertices in the \(M T G\) () is returned as an array. Vertices from all scales are returned if no option is used. The order of the elements in this array is not significant.

\section*{Usage}
```

>>> VtxList()
>>> VtxList(Scale=2)

```

\section*{Optional Parameters}
- Scale (int): used to select components at a particular scale.

\section*{Returns}
- list of vid

Background MTGs ()
See also:
```

MTG(),Scale(),Class(), Index().

```

Download the source file ../../src/mtg/aml.py.

\subsection*{4.3 Reading and writing MTG}

\subsection*{4.3.1 MTG}

The MTG data structure can be read/write from/to a MTG file format. The functions read_mtg(),write_mtg() , read_mtg_file().
openalea.mtg.io.read_mtg ( \(s, m t g=\) None, has_date=False \()\)
Create an MTG from its string representation in the MTG format.

\section*{Parameter}

> - s (string) - a multi-lines string

Return an MTG

\section*{Example}
```

f = open('test.mtg')
txt = f.read()
g = read_mtg(txt)

```

\section*{See also:}
```

 read_mtg_file().
    ```
openalea.mtg.io.read_mtg_file (fn,mtg=None, has_date=False)

Create an MTG from a filename.

\section*{Usage}
```

>>> g = read_mtg_file('test.mtg')

```

See also:
read_mtg().
openalea.mtg.io.write_mtg (g, properties=[], class_at_scale=None, nb_tab=None, display_id=False)
Transform an MTG into a multi-line string in the MTG format.
This method build a generic header, then traverses the MTG and transform each vertex into a line with its label, topoloical relationship and specific properties.

\section*{Parameters}
- \(g\) (MTG)
- properties (list): a list of tuples associating a property name with its type. Only these properties will be written in the out file.

\section*{Optional Parameters}
- class_at_scale (dict(name->int)): a map between a class name and its scale. If class _at_scale is None, its value will be computed from \(g\).
- nb_tab (int): the number of tabs used to write the code.
- display_id (bool): display the id for each vertex

Returns a list of strings.

\section*{Example}
```


Export all the properties defined in `g`.

We consider that all the properties are real numbers.

properties = [(p, 'REAL') for p in g.property_names() if p not in ['edge_type',
\hookrightarrow'index', 'label']]
mtg_lines = write_mtg(g, properties)

Write the result into a file example.mtg

filename = 'example.mtg'
f = open(filename, 'w')
f.write(mtg_lines)
f.close()

```

\subsection*{4.3.2 LPy}

The two functions \(\operatorname{lpy} 2 m t g()\) and \(m t g 2 \operatorname{lpy}()\) allow to convert the MTG data-structure into lpy and vise-versa. It ease the communication between the two modules. Each structure are traversed and the properties are copied. Properties can be any pyton object.
```

openalea.mtg.io.lpy2mtg(axial_tree,lsystem, scene=None)

```
openalea.mtg.io.mtg2lpy (g, lsystem, axial_tree=None)

Create an AxialTree from a MTG with scales.

\section*{Usage}
```

tree = mtg2lpy(g,lsystem)

```

\section*{Parameters}
- \(g\) : The mtg which have been generated by an LSystem.
- lsystem: A lsystem object containing various information. The lsystem is only used to retrieve the context and the parameters associated with each module name.

\section*{Optional Parameters}
- axial_tree: an empty axial tree. It is used to avoid complex import in the code.

Return axial tree

\section*{See also:}
```

mtg2axialtree()

```

\subsection*{4.3.3 AxialTree}
openalea.mtg.io.axialtree2mtg(tree, scale, scene, parameters=None)
Create an MTG from an AxialTree.
Tha axial tree has been generated by LPy. It contains both modules with parameters. The geometry is provided by the scene. The shape ids are the same that the module ids in the axial tree. For each module name in the axial tree, a scale and a list of parameters should be defined. The scale dict allow to add a module at a given scale in the MTG. The parameters dict map for each module name a list of parameter name that are added to the MTG.

\section*{Parameters}
- tree: The axial tree generated by the L-system
- scale: A dict containing the scale for each symbol name.
- scene: The scene containing the geometry.
- parameters: list of parameter names for each module.

Return mtg
Example
```

tree \# axial tree
scales = {}
scales['P'] = 1
scales['A'] = 2
scales['GU'] = 3
params ={}
params['P'] = []
params['A'] = ['length', 'radius']
params['GU'] = ['nb_flower']
g = axialtree2mtg(tree, scales, scene, params)

```

\section*{See also:}
```

mtg2axialtree(), lpy2mtg(),mtg2lpy()

```
openalea.mtg.io.mtg2axialtree (g, parameters=None, axial_tree=None)
Create a MTG from an AxialTree with scales.

\section*{Parameters}
- axial_tree: The axial tree managed by the L-system. Use an empty AxialTree if you do not want to concatenate this axial_tree with previous results.
- parameters: list of parameter names for each module.

Return mtg

\section*{Example}
```

params = dict()
params ['P'] = []
params['A'] = ['length', radius']

```
params ['GU'] = ['nb_flower']
tree \(=\) mtg2axialtree (g, params)

\section*{See also:}
```

axialtree2mtg(),mtg2lpy()

```

\subsection*{4.3.4 Cpfg}
```

openalea.mtg.io.read_lsystem_string(string, symbol_at_scale, functional_symbol={},

``` \(m t g=\) None \()\)
Read a string generated by a lsystem.

\section*{Parameters}
- string: The lsystem string representing the axial tree.
- symbol_at_scale: A dict containing the scale for each symbol name.

\section*{Optional parameters}
- functional_symbol: A dict containing a function for specific symbols. The args of the function have to be coherent with those in the string. The return type of the functions have to be a dictionary of properties: dict(name, value)

Return MTG object

\subsection*{4.3.5 Mss}
openalea.mtg.io.mtg2mss (name, mtg, scene, envelop_type='CvxHull')
Convert an MTG into the multi-scale structure implemented by fractalysis.

\section*{Parameters}
- name: name of the structure
- \(m t g\) : the \(m t g\) to convert
- scene: the scene containing the geometry
- envelop_type: algorithm used to fit the geometry.between scales.

Returns mss data structure.
Download the source file ../../src/mtg/io.py.

\subsection*{4.4 Traversal methods on tree and MTG}

Tree and MTG Traversals
class openalea.mtg.traversal.Visitor
Bases: ob ject
Used during a tree traversal.
post_order (vtx_id)
pre_order (vtx_id)
openalea.mtg.traversal.iter_mtg(mtg, vtx_id)
Iterate on an MTG by traversiong vtx_id and all its components.
This function traverse a complex before its components and a parent before its children.

\section*{Usage}
```

for vid in iter_mtg(g,g.root):
print vid

```

\section*{Parameters}
- mtg: the multi-scale graph
- vtx_id: the root of the sub-mtg which is traversed.

Returns iter of vid.
Traverse all the vertices contained in the sub_mtg defined by vtx_id.

\section*{See also:}
iter_mtg2(), iter_mtg_with_filter(), iter_mtg2_with_filter().

Note: Do not use this function. Use iter_mtg2 () instead. If several trees belong to vtx_id, only the first one will be traversed.

Note: This is a recursive implementation. It can be problematic for large MTG with lots of scales (e.g. >40).
openalea.mtg.traversal.iter_mtg2 (mtg, vtx_id)
Iterate on an MTG by traversiong vtx_id and all its components.
This function traverse a complex before its components and a parent before its children.

\section*{Usage}
```

for vid in iter_mtg2(g,g.root):
print vid

```

\section*{Parameters}
- \(m t g\) : the multi-scale graph
- vtx_id: the root of the sub-mtg which is traversed.

Returns iter of vid.
Traverse all the vertices contained in the sub_mtg defined by vtx_id.

\section*{See also:}
iter_mtg(), iter_mtg_with_filter(), iter_mtg2_with_filter()

Note: Use this function instead of iter_mtg ()
openalea.mtg.traversal.iter_mtg2_with_filter(mtg, vtx_id, pre_order_filter=None, post_order_visitor=None)
Iterate on an MTG by traversiong vtx_id and all its components.
If defined, apply the two visitor functions before and after having visited all the successor of a vertex.
This function traverse a complex before its components and a parent before its children.
Usage
```

def pre_order_visitor(vid):
print vid
return True
def post_order_visitor(vid):
print vid
for vid in iter_mtg_with_filter(g,g.root, pre_order_visitor, post_order_visitor):
pass

```

\section*{Parameters}
- mtg: the multi-scale graph
- vtx_id: the root of the sub-mtg which is traversed.

\section*{Optional Parameters}
- pre_order_visitor: function called before traversing the children or components. This function returns a boolean. If False, the sub-mtg rooted on the vertex is skipped.
- post_order_visitor : function called after the traversal of all the children and components.

Returns iter of vid.
Traverse all the vertices contained in the sub_mtg defined by \(v t x \_i d\).

\section*{See also:}
```

iter_mtg(),iter_mtg2(),iter_mtg2_with_filter()

```

Note: Use this function instead of iter_mtg_with_filter()
openalea.mtg.traversal.iter_mtg_with_filter(mtg, vtx_id, pre_order_filter=None, post_order_visitor=None)
Iterate on an MTG by traversiong vtx_id and all its components.
If defined, apply the two visitor functions before and after having visited all the successor of a vertex.
This function traverse a complex before its components and a parent before its children.
Usage
```

def pre_order_visitor(vid):
print vid
return True
def post_order_visitor(vid):
print vid
for vid in iter_mtg_with_filter(g,g.root, pre_order_visitor, post_order_visitor):
pass

```

\section*{Parameters}
- \(m t g\) : the multi-scale graph
- vtx_id: the root of the sub-mtg which is traversed.

\section*{Optional Parameters}
- pre_order_visitor: function called before traversing the children or components. This function returns a boolean. If False, the sub-mtg rooted on the vertex is skipped.
- post_order_visitor : function called after the traversal of all the children and components.

Returns iter of vid.
Traverse all the vertices contained in the sub_mtg defined by \(v t x \_i d\).

\section*{See also:}
iter_mtg(), iter_mtg2(),iter_mtg2_with_filter()

Note: Do not use this function. Instead use iter_mtg2_with_filter()
openalea.mtg.traversal.iter_scale ( \(g\), vtx_id, visited)
Internal method used by iter_mtg() and iter_mtg_with_visitor().

Warning: Do not use. This function may be removed in other version.
openalea.mtg.traversal.iter_scale2 (g, vtx_id, complex_id, visited)
Internal method used by iter_mtg() and iter_mtg_with_visitor().

Warning: Do not use. This function may be removed in other version.
openalea.mtg.traversal.post_order (tree, vtx_id, complex=None, visitor_filter=None)
Traverse a tree in a postfix way. (from leaves to root) This is a recursive implementation
openalea.mtg.traversal.post_order2 (tree, vtx_id, complex=None, pre_order_filter=None, post_order_visitor=None)
Traverse a tree in a postfix way. (from leaves to root)
Same algorithm than post_order. The goal is to replace the post_order implementation.
openalea.mtg.traversal.pre_order (tree, vtx_id, complex=None, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)
This is a non recursive implementation.
openalea.mtg.traversal.pre_order2 (tree, vtx_id, complex=None, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)
This is an iterative implementation.
```

openalea.mtg.traversal.pre_order2_with_filter(tree, vtx_id, complex=None,
pre_order_filter=None,
post_order_visitor=None)

```

Same algorithm than pre_order2. The goal is to replace the pre_order2 implementation.
The problem is for the pre_order filter when it is also a visitor
openalea.mtg.traversal.pre_order_in_scale (tree, vtx_id, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)
This is a non recursive implementation.
openalea.mtg.traversal.pre_order_with_filter(tree, vtx_id, pre_order_filter=None, post_order_visitor=None)
Traverse a tree in a prefix way. (root then children)
This is an iterative implementation.
TODO: make the naming and the arguments more consistent and user friendly. pre_order_filter is a functor which has to return a boolean. If the return value is False, the vertex is not visited. Otherelse, some computation can be done.

The post_order_visitor is used to execute, store, compute a function when the tree rooted on the vertex has been visited.
```

openalea.mtg.traversal.topological_sort (g,vtx_id,visited=None)

```

Topological sort of a directed acyclic graph.
This is not a fully recursive implementation.
openalea.mtg.traversal.traverse_tree (tree,vtx_id,visitor)
Traverse a tree in a prefix or postfix way.
We call a visitor for each vertex. This is usefull for printing, computing or storing vertices in a specific order.
See boost.graph
Download the source file . . / . /src/mtg/traversal.py.

\subsection*{4.5 Common algorithms}

Implementation of a set of algorithms for the MTG datastructure
```

openalea.mtg.algo.alg_height(g,v1,v2=None)
openalea.mtg.algo.alg_order (g,v1,v2=None)
openalea.mtg.algo.alg_rank (g,v1,v2=None)
openalea.mtg.algo.ancestors(g,vid, **kwds)

```

Return the vertices from vid to the root.

\section*{Parameters}
- \(g\) : a tree or an MTG
- vid: a vertex id which belongs to \(g\)

Returns an iterator from vid to the root of the tree.
```

openalea.mtg.algo.axis (g,vtx_id,scale=-1, **kwds)

```

TODO: see aml doc
```

openalea.mtg.algo.descendants (g,vtx_id, scale=-1,**kwds)

```

TODO: see aml doc
```

openalea.mtg.algo.edge_type (g,v)

```
openalea.mtg.algo.extremities ( \(g\), vid, **kwds)

TODO see aml doc Implement the method more efficiently...
openalea.mtg.algo.father (g, vid, scale=-1, **kwds)
See aml.Father function.
```

openalea.mtg.algo.full_ancestors (g,vl, **kwds)

```

Return the vertices from v1 to the root.
```

openalea.mtg.algo.height (g,v1,v2=None)

```
openalea.mtg.algo. heights \((g\), scale \(=-1)\)

Compute the order of all vertices at scale scale.
If scale \(==-1\), the compute the order for vertices at the finer scale.
```

openalea.mtg.algo.local_axis(g,vtx_id, scale=-1, **kwds)

```

Return a sequence of vertices connected by ' \(<\) ' edges. The first element of the sequence is vtx_id.
```

openalea.mtg.algo.location (g,vid,**kwds)

```

TODO: see doc aml.Location.
```

openalea.mtg.algo.lookForCommonAncestor (g, commonAncestors, currentNode)

```
openalea.mtg.algo. lowestCommonAncestor (g, nodes)

LCA algorithm
```

openalea.mtg.algo.order (g,v1,v2=None)

```
openalea.mtg.algo.orders ( \(g\), scale \(=-1\) )

Compute the order of all vertices at scale scale.
If scale \(==-1\), the compute the order for vertices at the finer scale.
```

openalea.mtg.algo.path (g,vidl, vid2=None)

```

Compute the vertices between v1 and v2. If v2 is None, return the path between v1 and the root. Otherelse, return the path between v 1 and v 2 . If the graph is oriented from v 1 to v 2 , sign is positive. Else, sign is negative.
```

openalea.mtg.algo.predecessor (g,vid, **kwds)
openalea.mtg.algo.rank(g,vl,v2=None)
openalea.mtg.algo.root(g,vid,RestrictedTo='NoRestriction', ContainedIn=None)

```

TODO: see aml.Root doc string.
```

openalea.mtg.algo.sons(g,vid,***wds)

```

TODO: see doc aml.sons.
```

openalea.mtg.algo.split (g,scale=1)

```

Split at scale.
openalea.mtg.algo.successor ( \(g\), vid, **kwds)
TODO: see aml.Successor doc string.
```

openalea.mtg.algo.topological_path (g,vl,v2=None, edge=None)
openalea.mtg.algo.trunk(g,vtx_id,scale=-1,**kwds)
openalea.mtg.algo.union (gl,g2,vidl=None,vid2=None, edge_type='<')

```

Return the union of the MTGs g 1 and g 2 .

\section*{Parameters}
- g1, g2 (MTG) : An MTG graph
- vid1 : the anchor vertex identid=fier that belong to \(g 1\)
- vid2 : the root of the sub_mtg that belong to \(g 2\) which will be added to g 1 .
- edge_type (str) : the type of the edge which will connect vid1 to vid2
```

openalea.mtg.algo.vertex_at_scale(g,vtx_id,scale)

```

Download the source file ../../src/mtg/algo.py.

\subsection*{4.6 Graphical representation of MTG}

\subsection*{4.6.1 PlantFrame}
```

openalea.mtg.PlantFrame

```

\subsection*{4.6.2 DressingData}

\subsection*{4.6.3 3D Plot}

Plot a PlantFrame.
Download the source files ../../src/mtg/plantframe/plantframe.py, ../../src/mtg/ plantframe/dresser.py,../../src/mtg/plantframe/turtle.py,

\section*{4.7 utilities (plots)}

Different utilities such as plot2D, plot3D, and so on...
openalea.mtg.util.mtg_plot ( \(g\), scales=1)
openalea.mtg.util.plot2d(g, image_name, scale=None, orientation=90)
Compute an image of the tree via graphviz.

\section*{Parameters}
- \(g\) (int) : an MTG object
- image_name (str) : output filename e.g. test.png

\section*{Optional parameters}
- scale (int): represents the MTG's scale to look at (default max)
- orientation (int): orientation angle (default 90)
openalea.mtg.util.plot3d(g, scale=None)
Compute a 3 d view of the MTG in a simple way:
- sphere for the nodes and thin cylinder for the edges.
openalea.mtg.util.plot_nx (g, *args, **kwds)
Download the source file . . / . ./src/mtg/util.py.

\section*{chapter 5}

\subsection*{5.1 Lead Developer}
- Christophe Pradal, <christophe pradal __at__ cirad fr>

\subsection*{5.2 Contributors}
- Christophe Godin, <christophe godin __at__ inria fr> (Concepts, Design, Previous implementation, Documentation)
- Thomas Cokelaer <thomas cokelaer __at__ isp fr> (Docmentation)

\title{
chapter 6
}

Indices and tables
- genindex
- modindex
- search

\section*{Python Module Index}

\author{
0 \\ openalea.mtg.algo, 311 \\ openalea.mtg.aml, 281 \\ openalea.mtg.traversal, 307 \\ openalea.mtg.util, 313
}

\section*{A}

Activate () (in module openalea.mtg.aml), 281
Active () (in module openalea.mtg.aml), 281 add_child() (openalea.mtg.mtg.MTG method), 267
add_child_and_complex() (openalea.mtg.mtg.MTG method), 267
add_child_tree() (openalea.mtg.mtg.MTG method), 267
add_component () (openalea.mtg.mtg.MTG method), 267
add_element() (openalea.mtg.mtg.MTG method), 267
add_property() (openalea.mtg.mtg.MTG method), 268
alg_height () (in module openalea.mtg.algo), 311 alg_order () (in module openalea.mtg.algo), 311 alg_rank () (in module openalea.mtg.algo), 311 AlgHeight () (in module openalea.mtg.aml), 282 AlgHeight () (openalea.mtg.mtg.MTG method), 251 Algorder () (in module openalea.mtg.aml), 282 AlgOrder () (openalea.mtg.mtg.MTG method), 251 AlgRank () (in module openalea.mtg.aml), 282 AlgRank() (openalea.mtg.mtg.MTG method), 252 Alpha () (in module openalea.mtg.aml), 283 ancestors() (in module openalea.mtg.algo), 311 Ancestors() (in module openalea.mtg.aml), 283 Ancestors() (openalea.mtg.mtg.MTG method), 252 axialtree 2 mtg () (in module openalea.mtg.io), 306 axis () (in module openalea.mtg.algo), 311 Axis () (in module openalea.mtg.aml), 284 Axis() (openalea.mtg.mtg.MTG method), 253

\section*{B}
backward_rewriting_traversal() nalea.mtg.mtg.MTG method), 268
Beta () (in module openalea.mtg.aml), 284
BottomCoord () (in module openalea.mtg.aml), 284
BottomDiameter() (in module openalea.mtg.aml), 284

\section*{C}
children() (openalea.mtg.mtg.MTG method), 268
children_iter() (openalea.mtg.mtg.MTG method), 268
Class() (in module openalea.mtg.aml), 284
Class() (openalea.mtg.mtg.MTG method), 254
class_name () (openalea.mtg.mtg.MTG method), 268
ClassScale() (in module openalea.mtg.aml), 285
ClassScale() (openalea.mtg.mtg.MTG method), 254
clear() (openalea.mtg.mtg.MTG method), 268
clear_properties() (openalea.mtg.mtg.MTG method), 269
colored_tree () (in module openalea.mtg.mtg), 280
Complex() (in module openalea.mtg.aml), 285
Complex() (openalea.mtg.mtg.MTG method), 255
complex() (openalea.mtg.mtg.MTG method), 269
complex_at_scale() (openalea.mtg.mtg.MTG method), 269
component_roots() (openalea.mtg.mtg.MTG method), 269
component_roots_at_scale() (ope-
nalea.mtg.mtg.MTG method), 269
component_roots_at_scale_iter() (openalea.mtg.mtg.MTG method), 269
component_roots_iter() (ope-
nalea.mtg.mtg.MTG method), 269
ComponentRoots() (in module openalea.mtg.aml), 286
ComponentRoots() (openalea.mtg.mtg.MTG method), 255
Components () (in module openalea.mtg.aml), 287
Components () (openalea.mtg.mtg.MTG method), 256
components () (openalea.mtg.mtg.MTG method), 269
components_at_scale() (openalea.mtg.mtg.MTG method), 269
components_at_scale_iter() (ope-
nalea.mtg.mtg.MTG method), 269
components_iter() (openalea.mtg.mtg.MTG
method), 270

Coord () (in module openalea.mtg.aml), 288
copy () (openalea.mtg.mtg.MTG method), 270

\section*{D}

DateSample() (in module openalea.mtg.aml), 288 Defined() (in module openalea.mtg.aml), 288 Defined() (openalea.mtg.mtg.MTG method), 257 descendants () (in module openalea.mtg.algo), 311 Descendants() (in module openalea.mtg.aml), 289
Descendants() (openalea.mtg.mtg.MTG method), 257
display() (openalea.mtg.mtg.MTG method), 270
display_mtg() (in module openalea.mtg.mtg), 281
display_tree() (in module openalea.mtg.mtg), 280
DressingData() (in module openalea.mtg.aml), 290

\section*{E}
edge_type () (in module openalea.mtg.algo), 311
edge_type () (openalea.mtg.mtg.MTG method), 270
edges () (openalea.mtg.mtg.MTG method), 270
EdgeType () (in module openalea.mtg.aml), 290
EdgeType () (openalea.mtg.mtg.MTG method), 258
extremities() (in module openalea.mtg.algo), 311
Extremities() (in module openalea.mtg.aml), 291
Extremities() (openalea.mtg.mtg.MTG method), 259

\section*{F}
father() (in module openalea.mtg.algo), 311
Father () (in module openalea.mtg.aml), 291
Father() (openalea.mtg.mtg.MTG method), 260
Feature () (in module openalea.mtg.aml), 292
FirstDefinedFeature() (in module openalea.mtg.aml), 293
forward_rewriting_traversal() (openalea.mtg.mtg.MTG method), 270
full_ancestors() (in module openalea.mtg.algo), 312

\section*{G}
get_root () (openalea.mtg.mtg.MTG method), 270
get_vertex_property() (openalea.mtg.mtg.MTG method), 270
graph_properties() (openalea.mtg.mtg.MTG method), 270

\section*{H}
has_vertex() (openalea.mtg.mtg.MTG method), 270
height () (in module openalea.mtg.algo), 312
Height () (in module openalea.mtg.aml), 293
Height () (openalea.mtg.mtg.MTG method), 260
heights() (in module openalea.mtg.algo), 312

I
Index() (in module openalea.mtg.aml), 294
Index() (openalea.mtg.mtg.MTG method), 261
index() (openalea.mtg.mtg.MTG method), 271
insert_parent() (openalea.mtg.mtg.MTG method), 271
insert_scale() (openalea.mtg.mtg.MTG method), 271
insert_sibling() (openalea.mtg.mtg.MTG method), 271
insert_sibling_tree() (openalea.mtg.mtg.MTG method), 271
is_leaf() (openalea.mtg.mtg.MTG method), 272
is_valid() (openalea.mtg.mtg.MTG method), 272
iter_edges() (openalea.mtg.mtg.MTG method), 272
iter_mtg () (in module openalea.mtg.traversal), 308
iter_mtg2() (in module openalea.mtg.traversal), 308
iter_mtg2_with_filter() (in module openalea.mtg.traversal), 308
iter_mtg_with_filter() (in module openalea.mtg.traversal), 309
iter_scale() (in module openalea.mtg.traversal), 310
iter_scale2() (in module openalea.mtg.traversal), 310
iteredges() (openalea.mtg.mtg.MTG method), 272
L
Label () (in module openalea.mtg.aml), 294
Label () (openalea.mtg.mtg.MTG method), 261
label() (openalea.mtg.mtg.MTG method), 272
LastDefinedFeature() (in module openalea.mtg.aml), 295
Length () (in module openalea.mtg.aml), 295
local_axis() (in module openalea.mtg.algo), 312
location() (in module openalea.mtg.algo), 312
Location() (in module openalea.mtg.aml), 295
lookForCommonAncestor() (in module openalea.mtg.algo), 312
lowestCommonAncestor() (in module openalea.mtg.algo), 312
lpy 2 mtg () (in module openalea.mtg.io), 305
M
max_scale() (openalea.mtg.mtg.MTG method), 272
MTG (class in openalea.mtg.mtg), 250
MTG () (in module openalea.mtg.aml), 296
MTG () (in module openalea.mtg.mtg), 249
mtg2axialtree() (in module openalea.mtg.io), 306
mtg2lpy () (in module openalea.mtg.io), 305
mtg2mss () (in module openalea.mtg.io), 307
mtg_plot () (in module openalea.mtg.util), 313
MTGROOt () (in module openalea.mtg.aml), 296

\section*{N}
nb_children() (openalea.mtg.mtg.MTG method), 273
nb_components() (openalea.mtg.mtg.MTG method), 273
nb_scales() (openalea.mtg.mtg.MTG method), 273
nb_siblings() (openalea.mtg.mtg.MTG method), 273
nb_vertices() (openalea.mtg.mtg.MTG method), 273
NextDate () (in module openalea.mtg.aml), 297
node () (openalea.mtg.mtg.MTG method), 273

\section*{0}
openalea.mtg.algo (module), 311
openalea.mtg.aml (module), 281
openalea.mtg.traversal (module), 307
openalea.mtg.util (module), 313
order () (in module openalea.mtg.algo), 312
Order () (in module openalea.mtg.aml), 297
order() (openalea.mtg.mtg.MTG method), 274
orders () (in module openalea.mtg.algo), 312

\section*{P}
parent() (openalea.mtg.mtg.MTG method), 274
path () (in module openalea.mtg.algo), 312
Path () (in module openalea.mtg.aml), 298
Path () (openalea.mtg.mtg.MTG method), 261
PDir() (in module openalea.mtg.aml), 298
PlantFrame (in module openalea.mtg), 313
PlantFrame () (in module openalea.mtg.aml), 299
Plot () (in module openalea.mtg.aml), 299
plot 2 d() (in module openalea.mtg.util), 313
plot3d() (in module openalea.mtg.util), 313
plot_nx() (in module openalea.mtg.util), 313
plot_property() (openalea.mtg.mtg.MTG method), 274
post_order() (in module openalea.mtg.traversal), 310
post_order() (openalea.mtg.traversal.Visitor method), 307
post_order2() (in module openalea.mtg.traversal), 310
pre_order() (in module openalea.mtg.traversal), 310
pre_order() (openalea.mtg.traversal.Visitor method), 307
pre_order2() (in module openalea.mtg.traversal), 310
pre_order2_with_filter() (in module openalea.mtg.traversal), 310
pre_order_in_scale() (in module openalea.mtg.traversal), 310
pre_order_with_filter() (in module openalea.mtg.traversal), 311
predecessor() (in module openalea.mtg.algo), 312
Predecessor() (in module openalea.mtg.aml), 299
Predecessor() (openalea.mtg.mtg.MTG method), 262
PreviousDate() (in module openalea.mtg.aml), 299
properties() (openalea.mtg.mtg.MTG method), 274
property () (openalea.mtg.mtg.MTG method), 274
property_names() (openalea.mtg.mtg.MTG method), 274
property_names_iter() (openalea.mtg.mtg.MTG method), 274

\section*{R}
random_mtg () (in module openalea.mtg.mtg), 280
random_tree() (in module openalea.mtg.mtg), 279
rank () (in module openalea.mtg.algo), 312
Rank () (in module openalea.mtg.aml), 299
Rank () (openalea.mtg.mtg.MTG method), 263
read_lsystem_string() (in module openalea.mtg.io), 307
read_mtg() (in module openalea.mtg.io), 304
read_mtg_file() (in module openalea.mtg.io), 304
reindex() (openalea.mtg.mtg.MTG method), 274
RelBottomCoord() (in module openalea.mtg.aml), 300
RelTopCoord() (in module openalea.mtg.aml), 300
remove_property() (openalea.mtg.mtg.MTG method), 275
remove_scale() (openalea.mtg.mtg.MTG method), 275
remove_tree() (openalea.mtg.mtg.MTG method), 275
remove_vertex() (openalea.mtg.mtg.MTG method), 275
replace_parent() (openalea.mtg.mtg.MTG method), 275
root (openalea.mtg.mtg.MTG attribute), 279
root () (in module openalea.mtg.algo), 312
Root () (in module openalea.mtg.aml), 300
Root () (openalea.mtg.mtg.MTG method), 263
roots() (openalea.mtg.mtg.MTG method), 275
roots_iter() (openalea.mtg.mtg.MTG method), 276

\section*{S}

Scale() (in module openalea.mtg.aml), 301
Scale() (openalea.mtg.mtg.MTG method), 264
scale() (openalea.mtg.mtg.MTG method), 276
scales() (openalea.mtg.mtg.MTG method), 277
scales_iter() (openalea.mtg.mtg.MTG method), 277
SDir() (in module openalea.mtg.aml), 301
set_root () (openalea.mtg.mtg.MTG method), 277
siblings() (openalea.mtg.mtg.MTG method), 277
siblings_iter() (openalea.mtg.mtg.MTG method), 277
simple_tree() (in module openalea.mtg.mtg), 279
sons () (in module openalea.mtg.algo), 312
Sons () (in module openalea.mtg.aml), 301
Sons() (openalea.mtg.mtg.MTG method), 264
split() (in module openalea.mtg.algo), 312
sub_mtg() (openalea.mtg.mtg.MTG method), 277
sub_tree() (openalea.mtg.mtg.MTG method), 278
successor() (in module openalea.mtg.algo), 312
Successor() (in module openalea.mtg.aml), 302
Successor() (openalea.mtg.mtg.MTG method), 265

\section*{T}

TopCoord() (in module openalea.mtg.aml), 303
TopDiameter () (in module openalea.mtg.aml), 303
topological_path() (in module openalea.mtg.algo), 312
topological_sort() (in module openalea.mtg.traversal), 311
traverse_tree() (in module openalea.mtg.traversal), 311
trunk () (in module openalea.mtg.algo), 312
Trunk () (in module openalea.mtg.aml), 303
Trunk() (openalea.mtg.mtg.MTG method), 266

\section*{u}
union() (in module openalea.mtg.algo), 312

\section*{V}
vertex_at_scale() (in module openalea.mtg.algo), 312
vertices() (openalea.mtg.mtg.MTG method), 278
vertices_iter() (openalea.mtg.mtg.MTG method), 278
VirtualPattern() (in module openalea.mtg.aml), 303
Visitor (class in openalea.mtg.traversal), 307
VtxList () (in module openalea.mtg.aml), 303
VtxList() (openalea.mtg.mtg.MTG method), 266

\section*{W}
write_mtg() (in module openalea.mtg.io), 304```


[^0]:    ${ }^{20}$ Godin, C. et Caraglio, Y., 1998. A multiscale model of plant topological structures. Journal of Theoretical Biology, 191: 1-46.

[^1]:    ${ }^{22}$ Godin, C., Costes, E. et Caraglio, Y., 1997. Exploring plant topology structure with the AMAPmod software : an outline. Silva Fennica, 31(3): 355-366.

[^2]:    ${ }^{43}$ Room, P. et Hanan, J., 1996. Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science Update, 1(1): 33-38.
    ${ }^{32}$ Hanan, J. et Room, P., 1997. Practical aspects of plant research. In: Plants to ecosystems - Advances in Computational Life Sciences 2 nd International Symposium on Computer Challenges in Life Science. M.T. Michalewicz (Ed.). CISRO Australia, Melbourne, Australie, pp. 28-43.
    ${ }^{21}$ Godin, C. et Costes, E., 1996. How to get representations of real plants in computers for exploring their botanical organisation. In: International Symposium on Modelling in Fruit Trees and Orchard Management, Avignon (FRA) 4-8/09/95, ISHS. Acta Horticulturae, Vol. 416, pp. 45-52.
    ${ }^{25}$ Godin, C., Guédon, Y., Costes, E. et Caraglio, Y., 1997. Measuring and analyzing plants with the AMAPmod software. In: Plants to ecosystems - Advances in Computational Life Sciences 2nd International Symposium on Computer Challenges in Life Science. M.T. Michalewicz (Ed.). CISRO Australia, Melbourne, Australie, pp. 53-84.

[^3]:    ${ }^{39}$ Prusinkiewicz, P. et Lindenmayer, A., 1990. The algorithmic beauty of plants. Springer Verlag.

    28

[^4]:    ${ }^{19}$ Godin, C., Bellouti, S. et Costes, E., 1996. Restitution virtuelle de plantes réelles : un nouvel outil pour l'aide à l'analyse de données botaniques et agronomiques. In: L'interface des mondes réels et virtuels, 5èmes Journées Internationales Informatiques, Montpellier, France 22-24/05/96, pp. 369-378.

