
mtg Documentation
Release 2.1.2

Christophe Pradal

Apr 20, 2022

Contents

1 Install 3

2 Use 5

3 MTG User Guide 7
3.1 Quick Start to manipulate MTGs . 7
3.2 The openalea.mtg.aml module: Long Tour . 10
3.3 MTG file . 18
3.4 Illustration: exploring an apple tree orchard . 74
3.5 Tutorial: Create MTG file from scratch . 100
3.6 PlantFrame (3D reconstruction of plant architecture) . 119
3.7 Using MTG within VisuAlea . 139
3.8 File syntax . 141
3.9 Lsystem and MTGs . 235
3.10 Bibliography . 247
3.11 Classes and Interfaces . 247
3.12 Algorithms . 248

4 Reference 249
4.1 MTG - Multi-scale Tree Graph . 249
4.2 High level reporting function compatible with AML . 281
4.3 Reading and writing MTG . 304
4.4 Traversal methods on tree and MTG . 307
4.5 Common algorithms . 311
4.6 Graphical representation of MTG . 313
4.7 utilities (plots) . 313

5 Credits 315
5.1 Lead Developer . 315
5.2 Contributors . 315

6 Indices and tables 317

Python Module Index 319

Index 321

i

ii

mtg Documentation, Release 2.1.2

Contents:

Contents 1

mtg Documentation, Release 2.1.2

2 Contents

CHAPTER 1

Install

Use conda to install openalea.mtg:

conda install openalea.mtg -c openalea

3

mtg Documentation, Release 2.1.2

4 Chapter 1. Install

CHAPTER 2

Use

Simple usage:

from openalea.mtg import *

5

mtg Documentation, Release 2.1.2

6 Chapter 2. Use

CHAPTER 3

MTG User Guide

Summary

Version 2.1.2

Release 2.1.2

Date Apr 20, 2022

Provides MTG or Multiscale Tree Graph data structure.

In order to quickly learn how to read a MTG file and plot it with PlantGL, jump to the the Quick Start to manip-
ulate MTGs. If you are in a hurry and want to parse the MTG to retrieve information about it, look at the The
openalea.mtg.aml module: Long Tour that fully describes the openalea.mtg.aml module.

Then, we advice you to look at the section MTG file to understand what is a MTG file through a detailled description
of the format and a few examples (note that the section File syntax gives a full description of the format). The section
Illustration: exploring an apple tree orchard explains through a full example what can be done with the MTG data in
point of view of statistical analysis.

Finally, once the MTG format is understood, you may want to create your own MTG file from scratch as described in
Section Tutorial: Create MTG file from scratch.

Note: The full guide reference is also available Reference.

3.1 Quick Start to manipulate MTGs

3.1.1 Reading an MTG file and activate it

A plant architecture described in a coding file can be loaded in openalea.mtg.aml as follows:

7

mtg Documentation, Release 2.1.2

>>> from openalea.mtg.aml import MTG
>>> g1 = MTG('user/agraf.mtg') # some errors may occur while loading the MTG
ERROR: Missing component for vertex 2532

Note: In order to reproduce the example, download agraf MTG file and the agraf DRF file. Other files
that may be required are also available in the same directory (*smb files) but are not compulsary.

The MTG function attempts to read a valid MTG description and parses the coding file. If errors are detected during
the parsing, they are displayed on the screen and the parsing fails. In this case, no MTG is built and the user should
make corrections to the coding file. If the parsing succeeds, this function creates an internal representation of the plant
(or a set of plants) encoded as a MTG. In this example, the MTG object is stored in variable g1 for further use. Note
that a MTG should always be stored in a variable otherwise it is destroyed immediately after its building. The last built
MTG is considered as the “active” MTG. It is used as an implicit argument by all the functions of the MTG module.

It is possible to change the active MTG using Activate()

g1 = MTG("filename1") # g1 is the current MTG
g2 = MTG("filename2") # g2 becomes the current MTG
Activate(g1) # g1 is now again the current MTG

Warning: the notion of activation is very important. Each call to a function in the package MTG will look at the
active MTG.

3.1.2 Plotting

Warning: PlantFrame is still in development and not all MTG files can be plotted with the current code, especially
the files that have no information about positions

The following examples shows how to plot the contents of a MTG given that a dressing data file (DRF) is available.
See the File syntax section for more information about the MTG and DRF syntax. Note that the following code should
be simplified in the future.

1 from openalea.mtg.aml import MTG
2 from openalea.mtg.dresser import dressing_data_from_file
3 from openalea.mtg.plantframe import PlantFrame, compute_axes, build_scene
4 g = MTG('agraf.mtg')
5 dressing_data = dressing_data_from_file('agraf.drf')
6 topdia = lambda x: g.property('TopDia').get(x)
7 pf = PlantFrame(g, TopDiameter=topdia, DressingData = dressing_data)
8 axes = compute_axes(g, 3, pf.points, pf.origin)
9 diameters = pf.algo_diameter()

10 scene = build_scene(pf.g, pf.origin, axes, pf.points, diameters, 10000)
11 from vplants.plantgl.all import Viewer
12 Viewer.display(scene)

3.1.3 Functions related to MTGs

There exists a comprehensive set of functions related to MTGs. These functions may be directly used on the active
MTG or they may be combined with each other in order to define new functions on MTGs. Here are some of them.

8 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Fig. 1: Figure 3.5 An apple tree plotted with the python script shown above

Full details may be found elsewhere either in the tutorials (e.g., The openalea.mtg.aml module: Long Tour) or in the
Reference section.

• MTG constructor. We’ve already seen how to read a MTG file by using MTG(), which takes one mandatory
argument, namely the MTG’s filename.

• Extraction of vertex sets: e.g. VtxList(). Different types of lists of vertices can be extracted from a MTG
through the function VtxList(). Notably, the set of functions at a given scale is obtained with the optional
argument Scale:

1 from openalea.mtg.aml import VtxList
2 VtxList()
3 vtx1 = VtxList(Scale=1) # vtx 1 returns a list e.g., [1]
4 vtx2 = VtxList(Scale=2)
5 vtx3 = VtxList(Scale=3)

On line 2, we extract the vertices that have scale set to 1. The returned list contains only 1 element that have the
index 1. Conversely, we could use the Scale() function to figure out what is the Scale of the vertex that have
the index 1:

>>> from openalea.mtg.aml import Scale
>>> Scale(1)
1

• Functions returning vertex attributes: e.g. Class(vtx), Index(vtx), Feature(vtx, feature_name). The dif-
ferent attributes attached to a given vertex can be retrieved by these functions. The class and the index of a
vertex are respectively returned by functions Class() and Index(). The value of any other attribute may be
obtained by specifying its name:

>>> from openalea.mtg.aml import Feature, Class, Index
>>> vtxList = VtxList(Scale=2) # get a list of vertices according to a scale
>>> v1 = vtxList[0] # look at the first vertex
>>> # Feature(vertex_id, name)

(continues on next page)

3.1. Quick Start to manipulate MTGs 9

mtg Documentation, Release 2.1.2

(continued from previous page)

>>> Feature(v1, "XX")
0.0
>>> Class(v1)
'U'
>>> Index(v1)
94

Returns the attribute “XX” (if any) of a vertex v1. These functions return scalar (INTEGER, STRING, REAL),
i.e. elementary types different from VTX.

• Functions for moving in MTGs: e.g. Father(vtx), Complex(vtx), Successor(vtx), Predecessor(vtx). Some
functions take a VTX as an argument and return a VTX. These functions allow topological moves in the
MTG, i.e. they allow to select new vertices with topological reference to given vertices. See Father(),
Predecessor() , Successor(), and Complex()

>>> from openalea.mtg.aml import Father, Successor, Predecessor
>>> Father(v1)
>>> Predecessor(v1)

Note: The predecessor is a special case of Father; predecessor function is equivalent to Father(v,
EdgeType-> ‘<’). It thus returns the father (at the same scale) of the argument

• Functions for creating collections of vertices: e.g. Sons(vtx), Components(vtx), Axix(vtx). These functions
return sets of vertices associated with a certain vertex. Components() returns all the vertices that compose at
the scale immediately superior a given vertex. Axis() returns the ordered set of vertices which compose the axis
which the argument belongs to.

• Functions for creating graphical representations of MTGs: PlantFrame(), Plot(), DressingData Plant-
Frame() enables the user to compute 3D-geometrical representations of MTGs.

The above functions can be combined together using the Python language to extract from plant databases various types
of information.

documentation status:

Documentation adapted from the AMAPmod user manual version 1.8 Dec 2009.

Documentation to be revised

3.2 The openalea.mtg.aml module: Long Tour

3.2.1 Reading the file

This page illustrates the usage of all the functionalities available in openalea.mtg.aml module. All the examples
uses the MTG file code_file2.mtg. If you are interested in the syntax, we stronly recommend you to look at
Section MTG file.

First, let us read the MTG file with the function MTG(). Note that only one MTG object can be manipulated at a time.
This MTG object is the active MTG.

10 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Fig. 2: Figure 1: Graphical representation of the MTG file code_file2.mtg used as an input file to all examples
contained in this page

3.2. The openalea.mtg.aml module: Long Tour 11

mtg Documentation, Release 2.1.2

>>> from openalea.mtg.aml import *
>>> g = MTG('user/code_file2.mtg')
>>> Active() == g
True

The Active() function checks that g is currently the active MTG.

If a new MTG file is read, it becomes the new active MTG object. However, the function Activate() can be use to
switch between MTG objects as follows:

>>> h = MTG('user/agraf.mtg')
>>> Active() == h
True
>>> Activate(g)

>>> MTGRoot()
0

3.2.2 Feature functions

Order, Rank and Height

Order() (AlgOrder()) look at the number of + sign that need to be crossed before reaching the vertex considered

>>> Order(3)
0
>>> Order(14)
1
>>> AlgOrder(3,14)
1

Height() (AlgHeight()) look at the number of components between the root of the vertex’s branch and the
vertex’s position.

>>> Height(3)
0
>>> Height(14)
10
>>> AlgHeight(3, 14)
10

Rank() (AlgRank()) returns the number < sign that need to be crosssed before reaching the vertex considered.

>>> Rank(3)
0
>>> Rank(14)
4
>>> AlgRank(3, 14)
5

Class(), Index(), Label(), Feature()

Class() gives the type of vertex usually defined by a letter

12 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

>>> Class(3)
'I'

and Index() gives the other part of the label

>>> Index(3)
1

When speaking about multiscale tree graph, we also want to access the Scale():

>>> Scale(3)
3

A new function called Label() combines the Class and Index:

>>> Label(3)
'I1'

Finally, Feature() returns value of a given feature coded in the MTG file.

>>> Feature(2, "Len")
10.0

ClassScale(), EdgeType(), Defined()

ClassScale() returns the Scale at which appears a given class of vertex:

>>> ClassScale('U')
3

EdgeType() returns the type of connection between two vertices (e.g., +, <)

>>> i=8; Class(i), Index(i)
('I', 6)
>>> i=9; Class(i), Index(i)
('U', 1)
>>> EdgeType(8,9)
'+'

Defined() tests whether a vertex’s id is present in the active MTG

>>> Defined(1)
True
>>> Defined(100000)
False

3.2.3 Date functions

The following function requires MTG files to contain Date information.

Todo: not yet implemented

3.2. The openalea.mtg.aml module: Long Tour 13

mtg Documentation, Release 2.1.2

Function
DateSample(e1)
FirstDefinedFeature(e1, e2)
LastDefinedFeature(e1, e2)
NextDate(e1)
PreviousDate(e1)

3.2.4 Functions for moving in MTGs

Trunk()

Trunk() returns the list of vertices constituting the bearing botanical axis of a branching system

>>> Trunk(2) # vertex 2 is U1 therefore the Trunk should return index related to
→˓U1, U2, U3
[2, 24, 31]
>>> Class(24), Index(24)
('U', 2)

>>> Trunk(3) # vertex 3 is an internode, so we get all internode of the axis
→˓containing vertex 3
[3, 4, 5, 6, 7, 8, 21, 22, 23, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35]
>>> Class(35), Index(35)
('I', 19)

Father()

Topological father of a given vertex.

>>> Label(8)
'I6'
>>> Father(8)
7
>>> Label(9) # Let us look at vertex 9 (with the U1 label)
'U1'
>>> Father(9) # and look for its father's index
2
>>> Label(2) # and its father's label that appear to also be equal to 1
'U1'

Axis()

Axis() returns the vertices of the axis to which belongs a given vertex.

>>> [Label(x) for x in Axis(9)]
['U1', 'U2']

The scale may be specified

>>> [Label(x) for x in Axis(9, Scale=3)]
['I20', 'I21', 'I22', 'I23', 'I24', 'I25', 'I26', 'I27', 'I28', 'I29']

14 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Ancestors()

Ancestors() returns a list of ancestors of a given vertex

>>> Ancestors(20) # of I29
[20, 19, 18, 17, 16, 14, 13, 12, 11, 10, 8, 7, 6, 5, 4, 3]
>>> [Class(x)+str(Index(x)) for x in Ancestors(20)]
['I29', 'I28', 'I27', 'I26', 'I25', 'I24', 'I23', 'I22', 'I21', 'I20', 'I6', 'I5', 'I4
→˓', 'I3', 'I2', 'I1']

Path()

The Path() returns a list of vertices defining the path between two vertices

>>> [Class(x)+str(Index(x)) for x in Path(8, 20)]
['I20', 'I21', 'I22', 'I23', 'I24', 'I25', 'I26', 'I27', 'I28', 'I29']

Sons()

In order to illustrate the Sons() function, let us consider the vertex 8

>>> Class(8), Index(8)
('I', 6)
>>> [Class(x)+str(Index(x)) for x in Sons(8)]
['I20', 'I7']

Descendants() and Ancestors()

Descendants() an array with all the vertices, at the same scale as v, that belong to the branching system starting
at v:

>>> [Class(x)+str(Index(x)) for x in Descendants(8)]

Ancestors() contains the vertices on the path from v back to the root (in this order) and finishes by the tree root.:

>>> [Class(x)+str(Index(x)) for x in Ancestors(8)]

Predecessor() and Successor()

Predecessor() returns the Father of a vertex connected to it by a ‘<’ edge, and is therefore equivalent to:

Father(v, EdgeType-> ‘<’).

Similarly, Successor() is equivalent to

Sons(v, EdgeType=’<’)[0]

3.2. The openalea.mtg.aml module: Long Tour 15

mtg Documentation, Release 2.1.2

Root()

Root() returns root of the branching systenme containing a given vertex and therefore is equivalent to:

Ancestors(v, EdgeType=’<’)[-1]

>>> [Class(x)+str(Index(x)) for x in Ancestors(8)]
['I6', 'I5', 'I4', 'I3', 'I2', 'I1']
>>> Root(8)
3
>>> Class(3)+str(Index(3))
'I1'

Todo: Complex returns Scale(v)-1 why what is it for?

>>> Complex(8)
2

Components()

Returns a list of vertices that are included in the upper scale of the vertex’s id considered. The array is empty if the
vertex has no components.

>>> Components(1, Scale=2)
[2, 9, 15, 24, 31]
>>> Components(1, Scale=3)
[3, 4, 5, 6, 7, 8, 21, 22, 23, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 25, 26, 27, 28,
→˓ 29, 30, 32, 33, 34, 35]

ComponentRoots()

Todo: to be done. find example

Location()

Vertex defining the father of a vertex with maximum scale.

>>> Label(9) # starting from a Component U1 at vertex's id 9
'U1'
>>> Father(9) # what is its Father ?
2
>>> Label(Father(9)) # answer: another U1 of vertex's id 2
'U1'
>>> Location(9) # what is the location of vertex 9
8
>>> Label(Location(9)) # the internode I6
'I6'

16 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Extremities()

>>> Label(8)
'I6'
>>> Label(Extremities(8))
['I29', 'I19']

3.2.5 Geometric interpretation

Most of the following functions are not yet implemented. See Quick Start to manipulate MTGs to see the usage of
PlantFrame() with dressing data.

You may also use the former AML code using openalea.aml package

PlantFrame() and Plot()

One can use openalea.aml for now:

>>> import openalea.aml as aml
>>> aml.MTG('code_file2.txt')
>>> pf = aml.PlantFrame(2)
>>> aml.Plot()

Shows the MTG file at scale 2. This is possible because Diameter and Lenmgth features are provided at that scale.

DressingData()
Plot()
TopCoord()
RelTopCoord(e1, e2)
BottomCoord(e1, e2)
RelBottomCoord(e1, e2)
Coord(e1, e2)
BottomDiameter(e1,e2)
TopDiameter(e1,e2)
Alpha(e1,e2)
Beta(e1,e2)
Length(e1,e2)
VirtualPattern(e1)
PDir(e1,e2)
SDir(e1,e2)

3.2.6 Comparison Functions

Todo: not yet implemented

TreeMatching(e1) MatchingExtract(e1)

3.2. The openalea.mtg.aml module: Long Tour 17

mtg Documentation, Release 2.1.2

documentation status:

Documentation adapted from the AMAPmod user manual version 1.8 Dec 2009.

Documentation to be revised

Contents

• MTG file

– MTG: a Plant Architecture Databases

* Overview

* Explanations

– Coding Individuals

– Exploration: a simple example

* Reading the MTG file

* 3D representation

· Example 1

· Example 2

* Extraction of plant entity features

* Extracting more information from plant databases

– Types of extracted data

– Statistical exploration and model building using other Openalea/VPlants packages

– Bibliography

3.3 MTG file

openalea.mtg provides a Multiscale Tree Graph data structure (MTG) that is compatible with the standard MTG
format that was defined in the AMAPmod software. For compatibility reasons, the same interfaces have been imple-
mented in this package. However, this is a completly new implementation written in Python that will evolve by adding
new functionalities and algorthims.

3.3.1 MTG: a Plant Architecture Databases

Overview

In OpenAlea/VPlants projects, plants are formally represented by multiscale tree graphs (MTGs)20. A MTG consists
of a set of layered tree graphs, representing plant topology at different scales (internodes, growth units, axes, etc.).

To build up MTGs from plants, plants are first broken down into plant components, organised in dif-
ferent scales (Figure3.2.a and Figure3.2.b). Components are given labels that specify their types (Fig-
ure3.2.b, U = growth unit, F = flowering site, S = short shoot, I = internode). These labels

20 Godin, C. et Caraglio, Y., 1998. A multiscale model of plant topological structures. Journal of Theoretical Biology, 191: 1-46.

18 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

are then used to encode the plant architecture into a textual form. The resulting coding file (Fig-
ure3.2.c) can then be analysed by openalea.mtg tools to build the corresponding MTG (Figure3.2.d).

Fig. 3: Figure 3.2,a Starting from real plants, measurements are made.
Fig.
4:
Figure
3.2.b
Plants
com-
po-
nents
are
iden-
ti-
fied
and
la-
belled
(e.g,
U
for
growth
unit)

3.3. MTG file 19

mtg Documentation, Release 2.1.2

Fig. 5: Figure 3.2.c The plant components and their attributes are encoded in a MTG file

Fig. 6: Figure 3.2.d A MTG representing the branching system can be built from the MTG. The plant representation
at annual shoot scale is in red and at growth unit in yellow.

Explanations

In
an
MTG,
the
or-
gan-
i-
sa-
tion
of
plant
com-
po-
nents
at
a
given
scale
of
de-
tail
is
rep-
re-

sented by a tree graph, where each component is represented by a vertex in the graph and edges represent the physical
connections between them. At any given scale, the plant components are linked by two types of relation, correspond-
ing to the two basic mechanisms of plant growth, namely the apical growth and the branching processes. Apical
growth is responsible for the creation of axes, by producing new components (corresponding to new portions of stem
and leaves) on top of previous components. The connection between two components resulting from the apical growth

20 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

is a precedes relation and is denoted by a < character.

On
the
other
hand,
the
branch-
ing
pro-
cess
is
re-
spon-
si-
ble
for
the
cre-
ation
of
ax-
il-
lary
buds
(these

buds can then create axillary axes with their own apical growth). The connection between two components resulting
from the branching process is a bears relation and is denoted by a + character. A MTG integrates – within a unique
model – the different tree graph representations that correspond to the different scales at which the plant is described.

Various
types
of
at-
tribute
can
be
at-
tached
to
the
plant
com-
po-
nents
rep-
re-
sented
in
the
MTG,
at
any
scale.

Attributes may be geometrical (e.g., diameter of a stem, surface area of a leaf or 3D positioning of a plant component)

3.3. MTG file 21

mtg Documentation, Release 2.1.2

or morphological (e.g., number of flowers, nature of the associated leaf, type of axillary production - latent bud, short
shoot or long shoot -).

MTGs
can
be
con-
structed
from
field
ob-
ser-
va-
tions
us-
ing
tex-
tual
en-
cod-
ing
of
the
plant
ar-
chi-
tec-

ture as described in22 (see Figure3.2.a). Alternatively, code files representing plant architectures can also be
constructed from simulation programs that generate artificial plants, or directly from any Python program, as we will
illustrate it in the Tutorial: Create MTG file from scratch.

Todo: fix the internal link reference

The
code
files
usu-
ally
have
a
spread-
sheet
for-
mat
and
con-
tain
the
de-
scrip-
tion

22 Godin, C., Costes, E. et Caraglio, Y., 1997. Exploring plant topology structure with the AMAPmod software : an outline. Silva Fennica, 31(3):
355-366.

22 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

of
plant
topol-
ogy
in
the

first few columns and the description of attributes attached to plant components on subsequent columns.

3.3.2 Coding
In-
di-
vid-
u-
als

Different
strate-
gies
have
been
pro-
posed
for
record-
ing
topo-
log-
i-
cal
struc-
tures
of
real
plants,
e.g.43,32

for
plant
rep-
re-

sented at a single scale and21,25, for multiscale representations. In OpenAlea/Vplants, plant topological structures are
abstracted as multiscale tree graphs. Describing a plant topology thus consists of describing the multiscale tree graph
corresponding to this plant. The description of a given plant can be specified using a coding language. This language
consists of a naming strategy for the vertices and the edges of multiscale graphs. A graph description consists of
enumerating the vertices consecutively using their names. The name of a vertex is constructed in such a way that

43 Room, P. et Hanan, J., 1996. Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science
Update, 1(1): 33-38.

32 Hanan, J. et Room, P., 1997. Practical aspects of plant research. In: Plants to ecosystems - Advances in Computational Life Sciences 2nd
International Symposium on Computer Challenges in Life Science. M.T. Michalewicz (Ed.). CISRO Australia, Melbourne, Australie, pp. 28-43.

21 Godin, C. et Costes, E., 1996. How to get representations of real plants in computers for exploring their botanical organisation. In: International
Symposium on Modelling in Fruit Trees and Orchard Management, Avignon (FRA) 4-8/09/95, ISHS. Acta Horticulturae, Vol. 416, pp. 45-52.

25 Godin, C., Guédon, Y., Costes, E. et Caraglio, Y., 1997. Measuring and analyzing plants with the AMAPmod software. In: Plants to
ecosystems - Advances in Computational Life Sciences 2nd International Symposium on Computer Challenges in Life Science. M.T. Michalewicz
(Ed.). CISRO Australia, Melbourne, Australie, pp. 53-84.

3.3. MTG file 23

mtg Documentation, Release 2.1.2

it clearly defines the topological location of a given vertex in the overall multiscale graph. The vertices and their
features are described using this formal language in a so called code file. Let us illustrate the general principle of this
coding language by the topological structure of the plant depicted in Figure3.3.

Fig. 7: Figure 3.3 Coding the topological structure of a two year old poplar tree

Each
ver-
tex
is
as-
so-
ci-
ated
with

24 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

a
la-
bel
con-
sist-
ing
of
a
let-
ter,
called
its
class,
and
an

integer, called its index. The class of a vertex often refers to the nature of the corresponding botanical entity, e.g. I
for internode, U for growth unit, B for branching system, etc. The index of a vertex is an integer which enables the
user to locally identify a vertex among its immediate neighbors. Apart from this purely structural role, indexes may
be used to convey additional meaning: they can be used for instance to encode the year of growth of an entity, its rank
in an axis, etc.

At
a
given
scale,
plants
are
in-
spected
by
work-
ing
up-
wards
from
the
base
of
the
trunk
and
sym-
bols
rep-
re-

senting each vertex and its relationship to its father are either written down or keyed directly into a laptop computer.

The
coded
string
starts
with
the
sin-
gle

3.3. MTG file 25

mtg Documentation, Release 2.1.2

Fig. 8: Figure 3.4

26 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

sym-
bol
/.
Cod-
ing
a
sin-
gle
axis
(e.g.
the
se-
ries
of
in-
tern-

odes of the trunk depicted in Figure3.4 a) would then yield the string:

/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6
→˓<I7
→˓<I8
→˓<I9
→˓<I10
→˓<I11
→˓<I12
→˓<I13
→˓<I14
→˓<I15
→˓<I16
→˓<I17
→˓<I18
→˓<I19

For
a
branch-
ing
struc-
ture
(
Fig-
ure3.4
a),
en-
cod-
ing
a
tree-
like
struc-

3.3. MTG file 27

mtg Documentation, Release 2.1.2

ture
in
a
lin-
ear
se-
quence

of symbols leads us to introduce a special notation, frequently used in computer science to encode tree-like structures
as strings (e.g.39). A square bracket is opened each time a bifurcation point is encountered during the visit (i.e. for
vertices having more than one son). A square bracket is closed each time a terminal vertex has just been visited
(i.e. a vertex with no son) and before backtracking to the last bifurcation point. In the above example, entity I6
is a bifurcation point since the description process can either continue by visiting entity I7 or I20. In this case,
the bifurcation point I6 is first stored in a bifurcation point stack (which is initially empty). Secondly, an opened
square bracket is inserted in the output string and thirdly, the visiting process resumes at one of the two possible
continuations, for example I20, leading to the following code :

/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6[+I20

The
en-
tire
branch
I20
to
I28
is
then
en-
coded
like
en-
ti-
ties
I1
to
I6.
En-
tity
I29
has
no
son,

and thus is a terminal entity. This results in inserting a closed square bracket in the string :

/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6[+I20
→˓<I21
→˓<I22
→˓<I23
→˓<I124
→˓<I25
→˓<I26
→˓<I27
→˓<I28
→˓<I29]

(continues on next page)

39 Prusinkiewicz, P. et Lindenmayer, A., 1990. The algorithmic beauty of plants. Springer Verlag.

28 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

The
last
bi-
fur-
ca-
tion
point
can
then
be
popped
out
of
the
bi-
fur-
ca-
tion
point
stack
and
the
vis-
it-

ing process can resume on the next possible continuation of I6, i.e. I7, leading eventually to the final output code
string:

/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6[+I20
→˓<I21
→˓<I22
→˓<I23
→˓<I124
→˓<I25
→˓<I26
→˓<I27
→˓<I28
→˓<I29]
→˓<I7
→˓<I8
→˓<I9
→˓<I10
→˓<I11
→˓<I12
→˓<I13
→˓<I14

→˓<I15<I16<I17<I18<I19]

3.3. MTG file 29

mtg Documentation, Release 2.1.2

Let
us
now
ex-
tend
this
cod-
ing
strat-
egy
to
mul-
ti-
scale
struc-
tures.
Con-
sider
a
plant
de-
scribed
at
three

different scales, for example the scale of internodes, the scale of growth units and the scale of plants (Figure3.4 b).
The depth first procedure explained above is generalized to multiscale structures in the following way. The multiscale
coding strategy consists basically of describing the plant structure at the highest scale in a depth first order. However,
during this process, each time a boundary of a macroscopic entity is crossed when passing from entity a to entity b,
the corresponding macroentity label, suffixed by a ‘/’, must be inserted into the code string just before the label of b
and after the edge type of (a,b). If more than one macroscopic boundary is crossed at a time, corresponding labels
suffixed by ‘/’ must be inserted into the code string at the same location, labels of the most macroscopic entities first.
In the multiscale graph of Figure3.4 b for example, the depth first visit is carried out at the internode level (highest
scale). The visit starts by entering in vertex I1 at the scale of internodes. However, to reach this entity from the
outside, we cross boundaries of P1 and U1, in this order. Then the depth first visit starts by creating the code string :

/
→˓P1/
→˓U1/
→˓I1

Then,
the
cod-
ing
pro-
cedes
through
ver-
tices
I1
to
I6,
with
no

30 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

new
macro-
scopic
bound-
ary
en-
coun-
tered.
I6
is

a bifurcation point and as explained above, this vertex is stored in the bifurcation point stack, a ‘[’ is inserted in the
code string and the depth first process continues on the son of I6 whose label is I20. Since to reach I20 from I6 the
macroscopic boundary of the first growth unit of the branch is crossed, on I20 the generated code string is

/
→˓P1/
→˓U1/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6[+U1/
→˓I20

Similarly
on
the
new
branch,
cod-
ing
con-
tin-
ues
and
crosses
a
growth
unit
bound-
ary
be-
tween
in-
tern-
odes
I24
and

I25 :

/
→˓P1/
→˓U1/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6[+U1/
→˓I20
→˓<I21
→˓<I22
→˓<I23
→˓<I24
→˓<U2/
→˓I25
→˓<I26
→˓<I27
→˓<I28
→˓<I29]

(continues on next page)

3.3. MTG file 31

mtg Documentation, Release 2.1.2

(continued from previous page)

Once
the
end
of
the
branch
is
reached
at
en-
tity
I29,
a
‘]’
is
in-
serted
in
the
code
string
and
the
pro-

cess backtracks to bifurcation point I6 in order to resume the visit at the internode scale on the next son of I6, i.e. I7.
Then coding goes through to the end of the poplar trunk since there are no more bifurcation points. Between entities
I7 and I19, two growth unit boundaries are crossed which generate the final code string :

/
→˓P1/
→˓U1/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6[+U1/
→˓I20
→˓<I21
→˓<I22
→˓<I23
→˓<I24
→˓<U2/
→˓I25
→˓<I26
→˓<I27]
→˓<I28
→˓<I29
→˓<I7
→˓<I8
→˓<I9
→˓<U2/

→˓I10<I11<I12<I13<I14<I15<U3/I16<I17<I18<I19]

32 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

It
is
of-
ten
the
case
in
prac-
ti-
cal
ap-
pli-
ca-
tions
that
a
num-
ber
of
at-
tributes
are
mea-
sured

on certain plant entities. Measured values can be attached to corresponding entities using a bracket notation, ‘{. . . }’.
For instance, assume that one wants to note the length and the diameter of observed growth units. For each measured
growth unit, a pair of ordered values defines respectively its measured length and diameter. Then, the precedent code
string would become:

/
→˓P1/
→˓U1
→˓{10,
→˓5.
→˓9}
→˓/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6[+U1
→˓{7,
→˓3.
→˓5}
→˓/
→˓I20
→˓<I21
→˓<I22
→˓<I23
→˓<I24
→˓<U2
→˓{4,

→˓2.1}/I25<I26<I27<I28<I29]<I7<I8<I9<U2{8,4.3}/I10<I11<I12<I13<I14<I15<U3{7.5,3.9}/I16
→˓<I17<I18<I19

3.3. MTG file 33

mtg Documentation, Release 2.1.2

In
this
string,
we
can
read
that
the
first
growth
unit
of
the
trunk,
U1,
has
length
10
cm
and
di-
am-
e-
ter

5.9 mm (units are assumed to be known and fixed).

In
prac-
ti-
cal
ap-
pli-
ca-
tions,
cod-
ing
plants
as
raw
se-
quences
of
sym-
bols
be-
comes
quite
un-
read-
able.

In order to give the user a better feedback of the plant topology in the code itself, we can slightly change the above
code format in order to achieve better legibility. Each square bracket is replaced by a new line and an indentation
level corresponding to the nested degree of this square bracket. Similarly, a new line is created after each feature set
and the feature values are written in specific columns. The following table gives the final code corresponding to the

34 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

example in Figure3.3 .

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓ Length Diameter
/
→˓P1/
→˓U1
→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓ 10 5.9
/
→˓I1
→˓<I2
→˓<I3
→˓<I4
→˓<I5
→˓<I6(continues on next page)

3.3. MTG file 35

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+U1
→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓ 7 3.5

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓I20
→˓<I21
→˓<I22
→˓<I23
→˓<I24
→˓<U2
→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓ 4 2.1

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓I25
→˓<I26
→˓<I27
→˓<I28
→˓<I29

(continues on next page)

36 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓<I7
→˓<I8
→˓<I9
→˓<U2
→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓ 8 4.3
/
→˓I10
→˓<I11
→˓<I12
→˓<I13
→˓<I14
→˓<I15
→˓<U3
→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓ 7.5 3.9
/
→˓I16
→˓<I17
→˓<I18
→˓<I19

3.3. MTG file 37

mtg Documentation, Release 2.1.2

ENTITY-CODE Length Diameter
/P1/U1 10. 5.9
^/I1<I2<I3<I4<I5<I6

+U1 7 3.5
^/I20<I21<I22<I23<I24<U2 4 2.1
^/I25<I26<I27<I28<I29

<I7<I8<I9<U2 8 4.3
/I10<I11<I12<I13<I14<I15<U3 7.5 3.9
/I16<I17<I18<I19

3.3.3 Exploration:
a
sim-
ple
ex-
am-
ple

Reading the MTG file

Once
a
plant
database
has
been
cre-
ated,
it
can
be
an-
a-
lyzed
us-
ing
the
ope-
nalea.newmtg
python
pack-
age.
The
dif-

ferent objects, methods and models contained in openalea.newmtg can be accessed through Python language.

The
for-
mal
rep-
re-
sen-

38 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

ta-
tion
of
a
plant,
and
more
gen-
er-
ally
of
a
set
of
plants,
can
be
built

using the function MTG():

from
→˓openalea.
→˓mtg.
→˓aml
→˓import
→˓MTG
g
→˓=
→˓MTG(
→˓'wij.
→˓mtg
→˓')

The
pro-
ce-
dure
MTG
at-
tempts
to
build
the
plant
for-
mal
rep-
re-
sen-
ta-
tion,
check-
ing
for
syn-

3.3. MTG file 39

mtg Documentation, Release 2.1.2

tac-
tic

and semantic correctness of the code file. If the file is not consistent, the procedure outputs a set of errors which have
to be corrected before applying a new syntactic analysis. Once the file is syntactically consistent, the MTG is built
(cf. Figure3.4 b) and is available in the variable g.

Warning:
How-
ever,
for
ef-
fi-
ciency
rea-
sons,
the
lat-
est
con-
structed
MTG
is
said
to
be
ac-
tive
:
it
will

be considered as an implicit argument of most of the functions dealing with MTGs. See Activate()

To
get
the
list
of
all
ver-
tices
con-
tained
in
g,
for
in-
stance,
we
write:

from
→˓openalea.
→˓mtg.
→˓aml
→˓import
→˓VtxList

(continues on next page)

40 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

vlist
→˓=
→˓VtxList()

instead
of:

vlist
→˓=
→˓VtxList(g)

The
func-
tion
VtxList()
ex-
tracts
the
set
of
ver-
tices
from
the
ac-
tive
MTG
and
re-
turns
the
re-
sult
in
vari-

able vlist.

Once
the
MTG
is
loaded,
it
is
fre-
quently
use-
ful
to
make
sure
that
the
database

3.3. MTG file 41

mtg Documentation, Release 2.1.2

ac-
tu-
ally
cor-
re-
sponds
to

the observed data. Part of this checking process has already been done by the MTG() function. But, some high-level
checking may still be necessary to ensure that the database is completely consistent. For instance, in our example, we
might want to check the number of plants in the database. Since plants are represented by vertices at scale 1, the set
of plants is built by:

plants
→˓=
→˓VtxList(Scale=1)

Like
vlist,
the
set
plants
is
a
set
of
ver-
tices.
The
num-
ber
of
plants
can
be
ob-
tained
by
com-
put-
ing

the size of the set plants.:

plant_
→˓nb
→˓=
→˓len(plants)

Note: In the former AML language, the function Size was used to get the length. Here a call to the standard python
function len() is used.

Each
plant
con-

42 Chapter 3. MTG User Guide

https://docs.python.org/3.4/library/functions.html#len

mtg Documentation, Release 2.1.2

sti-
tut-
ing
the
database
can
be
in-
di-
vid-
u-
ally
and
in-
ter-
ac-
tively
ac-
cessed
via
Python.

For instance, assuming the plant corresponding to the example of Figure3.4 b is represented by a vertex (at scale 1)
with label P1. Plant P1 can be identified in the database by selecting the vertex at scale 1 having index 1:

1 from
→˓openalea.
→˓mtg.
→˓aml
→˓import
→˓Index

2 plant1_
→˓list
→˓=
→˓[p
→˓for
→˓p
→˓in
→˓plants
→˓if
→˓Index(p)==1]

3 plant1
→˓=
→˓plant1_
→˓list[0]
→˓

→˓#
→˓plant1_
→˓list
→˓is
→˓a
→˓list
→˓of
→˓vertices

Note: former AML code: plant1 = Foreach _p In plants : Select(_p, Index(_p)==1)

3.3. MTG file 43

mtg Documentation, Release 2.1.2

The
lambda
ex-
pres-
sion
(line
2)
se-
lect
the
plants
ver-
tex
p
that
ful-
fills
the
con-
di-
ton
In-
dex==1.
Thus,

plant1 contains the vertex representing plant P1. Now it is possible to apply new functions to this vertex in order to
explore the nature of plant P1. Assume for instance we want to know the number of growth units composing P1:

from
→˓openalea.
→˓mtg.
→˓aml
→˓import
→˓Components
gu_
→˓nb
→˓=
→˓len(Components(plant1))

→˓#should
→˓be
→˓1
Components(1)
[2]
len(Components(2))
33

Todo: clarify this example and following comments

the
Components()
func-
tion
ap-
plies

44 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

to
a
ver-
tex
v
and
re-
turns
the
ver-
tices
com-
pos-
ing
v
at
the
next

superior scale. Since plant1 is a vertex at scale 1, representing plant P1, components of plant1 are vertices at scale 2,
i.e. growth units. It is also possible to compute the number of internodes composing a plant by simply specifying the
optional argument Scale in function Components:

internode_
→˓nb
→˓=
→˓len(Components(plant1[0],
→˓

→˓Scale=1))

→˓#
→˓should
→˓return
→˓1

3D representation

Example 1

Many
such
di-
rect
queries
can
be
made
on
the
plant
database
which
pro-
vide

3.3. MTG file 45

mtg Documentation, Release 2.1.2

in-
ter-
ac-
tive
ac-
cess
to
it.
How-

ever, a complementary synthesizing view of the database may be obtained by a graphical reconstruction of plant
geometry. Geometrical parameters, like branching and phyllotactic angles, diameters, length, shapes, are read from
the database. If they are not available, mean values can be inferred from samples or can be inferred from additional
data describing plant general geometry19. A 3D interpretation of the MTG provides the user with natural feedback on
the database. Built-in function PlantFrame() computes the 3D-geometry of plants. For example:

from
→˓openalea.
→˓mtg.
→˓plantframe
→˓import
→˓PlantFrame
frame1
→˓=
→˓PlantFrame(g)

Warning:
Plant-
Frame
from
ope-
nalea.mtg.aml
is
ob-
so-
let,
use
Plant-
Frame
from
ope-
nalea.mtg

Todo: script that leads to the picture in figure 3.5

Example 2

19 Godin, C., Bellouti, S. et Costes, E., 1996. Restitution virtuelle de plantes réelles : un nouvel outil pour l’aide à l’analyse de données botaniques
et agronomiques. In: L’interface des mondes réels et virtuels, 5èmes Journées Internationales Informatiques, Montpellier, France 22-24/05/96, pp.
369-378.

46 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Fig. 9: Figure 3.5

3.3. MTG file 47

mtg Documentation, Release 2.1.2

Todo: in progress

1 from
→˓openalea.
→˓mtg.
→˓aml
→˓import
→˓MTG

2 from
→˓openalea.
→˓mtg.
→˓dresser
→˓import
→˓dressing_
→˓data_
→˓from_
→˓file

3 from
→˓openalea.
→˓mtg.
→˓plantframe
→˓import
→˓PlantFrame,
→˓

→˓compute_
→˓axes,
→˓

→˓build_
→˓scene

4 g
→˓=
→˓MTG(
→˓'agraf.
→˓mtg
→˓')

5 dressing_
→˓data
→˓=
→˓dressing_
→˓data_
→˓from_
→˓file(
→˓'agraf.
→˓drf
→˓')

6 topdia
→˓=
→˓lambda
→˓x:
→˓

→˓g.
→˓property(
→˓'TopDia
→˓').
→˓get(x)

7 pf
→˓=
→˓PlantFrame(g,
→˓

→˓TopDiameter=topdia,
→˓

→˓

→˓

→˓

→˓DressingData
→˓=
→˓dressing_
→˓data)

(continues on next page)

48 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

8 axes
→˓=
→˓compute_
→˓axes(g,
→˓

→˓3,
→˓

→˓pf.
→˓points,
→˓

→˓pf.
→˓origin)

9 diameters
→˓=
→˓pf.
→˓algo_
→˓diameter()

10 scene
→˓=
→˓build_
→˓scene(pf.
→˓g,
→˓

→˓pf.
→˓origin,
→˓

→˓axes,
→˓

→˓pf.
→˓points,
→˓

→˓diameters,
→˓

→˓10000)
11 from

→˓

→˓vplants.
→˓plantgl.
→˓all
→˓import
→˓Viewer

12 Viewer.
→˓display(scene)

Note: the previous example uses many functions that have not been introduced yet but they will be desribe later on.

Todo: CECHK that it workds in openalea.mtg : computes a 3D-geometrical interpretation of P1 topology at scale
2, i.e. in terms of growth units (Figure3.5 a). Like in the previous example, PlantFrame takes Scale as an optional
argument which enables us to build the 3D-geometrical interpretation of P1 at the level of internodes (Figure3.5 b):

Refinements
of
this

3.3. MTG file 49

mtg Documentation, Release 2.1.2

Fig. 10: Figure 3.5 An apple tree plotted with the python script above

3D
ge-
o-
met-
ri-
cal
re-
con-
struc-
tion
may
be
ob-
tained
with
the
pos-
si-
bil-
ity
to

change the shape of the different plant components, possibly at different scales, to tune geometrical features (length,
diameter, insertion angle, phyllotaxy, . . .) as functions of the topological position of entities in the plant structure.

Extraction of plant entity features

When
at-
tributes
of
en-

50 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

ti-
ties
are
avail-
able
in
MTGs,
it
is
pos-
si-
ble
to
re-
trieve
their
val-
ues
by

using the function Feature():

first_
→˓gu
→˓=
→˓Trunk(2)[0]
first_
→˓gu_
→˓diameter
→˓=
→˓Feature(first_
→˓gu,
→˓

→˓

→˓"Diameter
→˓")

Note: Here Diameter is a property/feature contained in the MTG header. Feature’s names can be found in MTG’s
header, or directly by instrospection using this python syntax:: [x for x in g.property_names()]

The
first
line
re-
trieves
the
ver-
tex
cor-
re-
spond-
ing
to
the
first

3.3. MTG file 51

mtg Documentation, Release 2.1.2

growth
unit
of
the
trunk
of
P1
(func-
tion

Trunk() returns the ordered set of components of vertex P1, and operator @ with argument 1 selects the first
element of this set). Then, in the second line, the diameter of this growth unit is extracted from the database. Variable
first_gu_diameter then contains the value 5.9 (see the code file). Similarly the length of the first growth unit can be
retrieved:

first_
→˓gu_
→˓length
→˓=
→˓Feature(first_
→˓gu,
→˓

→˓

→˓"Length
→˓")

Variable
first_gu_length
con-
tains
value
10.

The
user
can
sim-
plify
this
ex-
trac-
tion
by
cre-
at-
ing
alias
names
us-
ing
lambda
func-
tion:

>
→˓>
→˓>
→˓

→˓diameter
→˓=
→˓lambda
→˓x:
→˓g.
→˓property(
→˓'Diameter
→˓').
→˓get(x)

(continues on next page)

52 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

>
→˓>
→˓>
→˓

→˓length
→˓=
→˓lambda
→˓x:
→˓g.
→˓property(
→˓'Length
→˓').
→˓get(x)

It
is
then
pos-
si-
ble
with
these
func-
tions
to
build
data
ar-
rays
cor-
re-
spond-
ing
to
fea-
ture
val-
ues

associated with growth units:

>
→˓>
→˓>
→˓

→˓growth_
→˓unit_
→˓set
→˓=
→˓VtxList(Scale=2)
>
→˓>
→˓>
→˓

→˓[length(x)
→˓for
→˓x
→˓in
→˓growth_
→˓unit_
→˓set]

(continues on next page)

3.3. MTG file 53

mtg Documentation, Release 2.1.2

(continued from previous page)

[10.
→˓0,
→˓

→˓7.
→˓0,
→˓

→˓4.
→˓0,
→˓

→˓8.
→˓0,
→˓

→˓7.
→˓5]

Here,
VtxList
should
con-
tain
the
in-
dex
2
and
there-
fore
the
sec-
ond
line
re-
turns
10cm,
as
ex-
pected.
More-
over,

new synthesized attributes can be defined by creating new functions using these basic features. For example, making
the simple assumption that the general form of a growth unit is a cylinder, we can compute the volume of a growth
unit:

from
→˓math
→˓import
→˓pi
volume
→˓=
→˓lambda
→˓x:
→˓pi
→˓*
→˓diameter(x)**2
→˓/
→˓

→˓4.
→˓

→˓*
→˓length(x)

(continues on next page)

54 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

Now,
the
user
can
use
this
new
func-
tion
on
any
growth
unit
en-
tity
as
if
it
were
a
fea-
ture
recorded
in

the MTG. For instance, the volume of the first growth unit is computed by:

first_
→˓gu_
→˓volume
→˓=
→˓volume(first_
→˓gu)

Todo: trunk and plant volumes using numpy.sum ?

The
to-
tal
vol-
ume
of
the
trunk:

trunk_
→˓volume
→˓=
→˓sum([volume(x)
→˓for
→˓x
→˓in
→˓growth_
→˓unit_
→˓set])

(continues on next page)

3.3. MTG file 55

mtg Documentation, Release 2.1.2

(continued from previous page)

Todo: how and purpose of volume for the whole plant. Isnt’ it the volume of the trunk ?

The
wood
vol-
ume
of
the
whole
plant
can
be
com-
puted
by:

plant_
→˓volume
→˓=
→˓sum[volume(gu)
→˓for
→˓gu
→˓in
→˓Components(plant1)])

Extracting more information from plant databases

As
il-
lus-
trated
in
the
pre-
vi-
ous
sec-
tion,
plant
databases
can
be
in-
ves-
ti-
gated
by
build-
ing

56 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

ap-
pro-

priate Python lambda functions. Built-in words of the openalea.mtg.aml module may be combined in various ways
in order to create new queries. In this way, more and more elaborated types of queries can be constructed by creating
user-defined functions which are equivalent to computing programs. In order to illustrate this procedure, let us
assume that we would like to study distributions of numbers of internodes per growth units, such distributions being
an important basic prerequisite for botanically-based 3D plant simulations (e.g.29373). At a first stage, we consider all
the growth units contained in the plant database together. We first need to define a function which returns the number
of internodes of a given growth unit. Since in the database, each growth unit (at scale 2) is composed of internodes (at
scale 3) we compute the set of internodes constituting a given growth unit x as follows:

internode_
→˓set
→˓=
→˓lambda
→˓x:
→˓Components(x)

The
ob-
ject
re-
turned
by
func-
tion
in-
tern-
ode_set()
is
a
set
of
ver-
tices.
The
num-
ber
of
in-
tern-
odes

of a given growth unit is thus the size of this set:

internode_
→˓nb
→˓=
→˓lambda
→˓x:
→˓len(internode_
→˓set(x))

(continues on next page)

2 Barthélémy, D., 1991. Levels of organization and repetition phenomena in seed plants. Acta Biotheoretica, 39: 309-323.
9 de Reffye, P., Dinouard, P. et Barthélémy, D., 1991. Modélisation et simulation de l’architecture de l’Orme du Japon Zelkova serrata (Thunb.)

Makino (Ulmaceae): la notion d’axe de référence. In: 2ème Colloque International sur l’Arbre, Montpellier (FRA) 9-14/09/90. Naturalia Mon-
speliensa, Vol. hors-série, pp. 251-266.

37 Jaeger, M. et de Reffye, P., 1992. Basic concepts of computer simulation of plant growth. In: The 1990 Mahabaleshwar Seminar on Modern
Biology, Mahabaleshwar (IND) . Journal of Biosciences, Vol. 17, pp. 275-291.

3 Bouchon, J., de Reffye, P. et Barthélémy, D. (Eds), 1997. Modélisation et simulation de l’architecture des végétaux. Science Update. INRA
Editions, Paris, France, 435 pp.

3.3. MTG file 57

mtg Documentation, Release 2.1.2

(continued from previous page)

Second,
the
en-
ti-
ties
on
which
the
pre-
vi-
ous
func-
tion
has
to
be
ap-
plied,
must
be
lo-
cated
in
the

database. A set of vertices is created by selecting plant entities having a certain property.

The
set
of
growth
units
is
the
set
of
en-
ti-
ties
at
scale
2

gu_
→˓set
→˓=
→˓VtxList(Scale=2)

Third,
we
have
to
ap-

58 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

ply
func-
tion
in-
tern-
ode_nb()
to
each
el-
e-
ment
of
the
se-
lected
set
of
en-
ti-

ties:

>
→˓>
→˓>
→˓

→˓sample1
→˓=
→˓[internode_
→˓nb(x)
→˓for
→˓x
→˓in
→˓gu_
→˓set]
>
→˓>
→˓>
→˓

→˓sample1
[9,
→˓

→˓5,
→˓

→˓5,
→˓

→˓6,
→˓

→˓4]

Todo: in all the documentation, we should also emphasize the puire Pythonic style. For instance in the example
above, we could have created a generator g.components() and then for [len([x for x in g.components(y)]) for y in
gu_set]

We
use

3.3. MTG file 59

mtg Documentation, Release 2.1.2

the
list-
comprehension
Python
syn-
tax
in
or-
der
to
browse
the
whole
set
of
growth
units
of
the
database,
and
to

apply our internode_nb() function to each of them.

Now,
we
want
to
get
the
dis-
tri-
bu-
tion
of
the
num-
ber
of
in-
tern-
odes
on
a
more
re-
stricted
set

of growth units. More precisely, we would like to study the distribution of internode numbers of different populations
corresponding to particular locations in the plant structure. We thus have to define these populations first and then to
iterate the function internode_nb() on each entity of this new population like in the previous example. Let us consider
for example the population made of the growth units composing branches of order 1. Consider again the whole set of
growth units gu_set. Among them, those which are located on branches (defined as entities of order 1 in AML) are
defined by:

60 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

>
→˓>
→˓>
→˓

→˓gu1
→˓=
→˓[x
→˓for
→˓x
→˓in
→˓VtxList(Scale=2)]
>
→˓>
→˓>
→˓

→˓[Order(x)
→˓for
→˓x
→˓in
→˓gu1]
[0,
→˓

→˓1,
→˓

→˓1,
→˓

→˓0,
→˓

→˓0]

Here
again,
we
use
the
Python
list
com-
pre-
hen-
sion
in
or-
der
to
browse
the
whole
set
of
growth
units
of
the

database, and to apply the Order function to each of them. Then, in order to select growth unit vertices whose order is
1 (all the growth units in the corpus which are located on branches), change the above command into:

3.3. MTG file 61

mtg Documentation, Release 2.1.2

>
→˓>
→˓>
→˓

→˓[x
→˓for
→˓x
→˓in
→˓VtxList(Scale=2)
→˓if
→˓Order(x)
→˓==
→˓1]
[9,
→˓

→˓15]

Eventually,
af-
ter
the
sam-
ple
of
val-
ues
is
built,
the
above
func-
tion
is
ap-
plied
to
the
se-
lected
en-
ti-

ties :

Todo: figure out what was the input data for the following plots and use either pylab or Histogram or both .

::
sample
=
Fore-
ach
_x
In
gu1
:

62 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

in-
tern-
ode_number(_x)

At
this
stage,
a
set
of
val-
ues
has
been
ex-
tracted
from
the
plant
database
cor-
re-
spond-
ing
to
a
topo-
log-

ically selected set of entities. This sample of data can be further investigated with appropriate AML tools. For
example, AML provides the built-in function Histogram() which builds the histogram corresponding to a set of
values.:

histo1
→˓=
→˓Histogram(sample)
Plot(histo1)

This
plot
gives
the
graph
de-
picted
in
Fig-
ure
3-
6a.
Sim-
i-
larly,
by
se-
lect-

3.3. MTG file 63

mtg Documentation, Release 2.1.2

ing
sam-
ples
cor-
re-
spond-

ing to different topological situations, we would obtain the series of plots in Figure 3-6 [4].

3.3.4 Types
of
ex-
tracted
data

various
types
of
data
can
be
ex-
tracted
from
MTGs.
For
each
plant
com-
po-
nent
in
the
database,
at-
tributes
can
be
ex-

tracted or synthesised using the Python language. The wood volume of a component, for instance, can be synthesised
from the diameter and the length of this component measured in the field. The type of measurement carried out in
the context of architectural analysis emphasises the use of discrete variables which can be either symbolic, e.g. the
type of axillary production at a given node (latent bud, short shoot or long shoot) or numeric (number of flowers in
a branching structure). In general, a plant component can be qualified by a set of attributes, called a multivariate
attribute. A plant component, for instance, could be described by a multivariate attribute made up of the volume, the
number of leaves, the azimuth and the botanical type of the constituent.

Multivariate
at-
tributes
cor-
re-
spond
to

64 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Fig. 11: Figure 3.6

3.3. MTG file 65

mtg Documentation, Release 2.1.2

the
first
cat-
e-
gory
of
data
that
can
be
ex-
tracted
from
MTGs.
A
sec-
ond

and more complex category of particular importance is defined by sequences of – possibly multivariate – attributes.
The aim of this category is to represent biological sequences that can be observed in the plant architecture. These
sequences may have two origins: they can correspond to changes over time in the attributes attached to a given plant
component. In this case, the sequences represent the trajectories of the components with respect to the considered
attributes and the index parameter of the sequences is the observation date. Sequences can also correspond to paths in
the tree topological structures contained in MTGs. In this case, the index parameter of the sequences is a spatial index
that denotes the rank of the successive components in the considered paths. Spatially-indexed sequence is a versatile
data type for which the attributes of a component in the path can be either directly extracted or synthesised from the
attributes of the borne components. In the later case, all the information contained in the branching system can be
efficiently summarised into a sequence of multivariate attributes, corresponding to the main axis of the branching
system.

A
third
cat-
e-
gory
of
ob-
ject
can
be
ex-
tracted
from
MTGs,
namely
trees
of
–
mul-
ti-
vari-
ate
–
at-

tributes. Like sequences, these objects are intended to preserve part of the plant organisation in the extracted data.

66 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Tree structures represent the raw organisation of the components that compose branching structures of the plant at a
certain scale of analysis.

Data
ex-
tracted
from
MTGs
can
thus
be
or-
dered
ac-
cord-
ing
to
their
level
of
struc-
tural
com-
plex-
ity:
un-
struc-

tured data, sequences, trees. These levels correspond to different degrees to which the structural information contained
in the MTG is summarised and are associated with different statistical analysis techniques.

3.3.5 Statistical
ex-
plo-
ration
and
model
build-
ing
us-
ing
other
Ope-
nalea/VPlants
pack-
ages

To
ex-
plore
plant
ar-

3.3. MTG file 67

mtg Documentation, Release 2.1.2

chi-
tec-
ture,
users
are
fre-
quently
led
to
cre-
ate
data
sam-
ples
ac-
cord-
ing
to
topo-

logical criteria on plant architecture. A wide range of AML primitives that apply to MTGs enable the user to express
these topological criteria and select corresponding plant components. Samples of the three main structural data types
can be created as described below:

Multivariate
sam-
ples:
Sim-
ple
data
sam-
ples
can
be
cre-
ated
by
com-
put-
ing
the
set
of
-

pos-
si-
bly

multivariate - attributes associated with a selected set of components, e.g. the number of flowers borne by components
that appeared in the plant structure during 1995. The packages openalea.stat_tool and openalea.sequence_analysis
provides a core of tools for exploring these objects. However, a very large panoply of methods are available in other
statistical packages for analysing multivariate samples (the user can export data to other softwares such as RPy).

Samples
of
mul-

68 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

ti-
vari-
ate
se-
quences:
In
the
con-
text
of
plant
ar-
chi-
tec-
ture
anal-
y-
sis,
MTG
ob-
jects

present two advantages. On the one hand, part of the plant organisation is directly preserved in the sample through
the notion of ‘’sequence” discussed above. On the other hand, the structural complexity of samples of sequences
still remains tractable and efficient exploratory tools and statistical models can be designed for them2829. The
openalea.sequence_analysis system includes mainly classes of stochastic processes such as (hidden) Markov chains,
(hidden) semi-Markov chains and renewal processes for the analysis of discrete-valued sequences. A set of exploratory
tools dedicated to sequences built from numeric variables is also available, including sample (partial) autocorrelation
functions and different types of linear filters (for instance symmetric smoothing filters to extract trends or residuals).

Samples
of
mul-
ti-
vari-
ate
trees:
The
anal-
y-
sis
of
sam-
ples
of
tree
struc-
tured
data
is
a

28 Guédon, Y., Barthélémy, D. et Caraglio, Y., 1999. Analyzing spatial structures in forests tree architectures. In: Salamandra (Ed) Empirical and
process-based models for forest tree and stand growth simulation, Oeiras, Portugal 21-27/09/1997, pp. 23-42.

29 Guédon, Y. et Costes, E., 1999. A statistical approach for analyszing sequences in fruit tree architecture. In: Wagenmakers P.S., van der
Werf W., Blaise Ph. (Eds), 5th International Symposium on Computer modelling in fruit research and orchard management, Wageningen, The
Netherlands 28-31/07/1998. Acta Horticulturae, pp. 271-280.

3.3. MTG file 69

mtg Documentation, Release 2.1.2

chal-
leng-
ing

problem. A sample of trees could represent a set of comparable branching systems considered at different locations
in a plant or in several plants. Similarly, the development of a plant can be represented by a set of trees, representing
different steps in time of a branching system. Plant organisation for this type of object is relatively well preserved
in the raw data. However, this requires a higher degree of conceptual and algorithmic complexity. We are currently
investigating methods for computing distances between trees13 which could be used as a basis for dedicated statistical
tools.

OpenAlea/VPlants
con-
tains
a
large
set
of
tools
for
analysing
these
dif-
fer-
ent
types
of
sam-
ples,
with
spe-
cial
em-
pha-
sis

on tools dedicated to the analysis of samples of discrete-valued sequences. These tools fall into one of the three
following categories:

•
exploratory
anal-
y-
sis
re-
ly-
ing
on
de-
scrip-
tive
meth-
ods
(graph-
i-

13 Ferraro, P. et Godin, C., 1998. Un algorithme de comparaison d’arborescences non ordonnées appliqué à la comparaison de la structure
topologique des plantes. In: SFC’98, Recueil des Actes, Montpellier, France 21-23/09/1998, Agro Monpellier, pp. 77-81.

70 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

cal
dis-
play,
com-
pu-
ta-
tion
of

characteristics such as sample autocorrelation functions, etc.),

•
parametric
model
build-
ing,

•
comparison
tech-
niques
(be-
tween
in-
di-
vid-
ual
data).

The
aim
of
build-
ing
a
model
is
to
ob-
tain
ad-
e-
quate
but
par-
si-
mo-
nious
rep-
re-
sen-
ta-
tion

of samples of data. A parametric model may then serve as a basis for the interpretation of a biological phenomenon.
The elementary loop in the iterative process of model building is usually broken down into three stages:

1.

3.3. MTG file 71

mtg Documentation, Release 2.1.2

The
spec-
i-
fi-
ca-
tion
stage
con-
sists
of
de-
ter-
min-
ing
a
fam-
ily
of
can-
di-
date
mod-
els

on the basis of the results given by an exploratory analysis of the data and some biological knowledge.

2.
The
es-
ti-
ma-
tion
stage,
con-
sists
of
in-
fer-
ring
the
model
pa-
ram-
e-
ters
on
the
ba-
sis
of

the data sample. This model is chosen from within the family determined at the specification stage. Automatic
methods of model selection are available for classes of models such as (hidden) Markov chains dedicated to
the analysis of stationary discrete-valued sequences. The estimation is always made by algorithms based on the
maximum likelihood criterion. Most of these algorithms are iterative optimisation schemes which can be considered

72 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

as applications of the Expectation-Maximisation (EM) algorithm to different families of models,122627. The EM
algorithm is a general-purpose algorithm for maximum likelihood estimation in a wide variety of situations best
described as incomplete data problems.

3.
The
val-
i-
da-
tion
stage,
con-
sists
of
check-
ing
the
fit
be-
tween
the
es-
ti-
mated
model
and
the
data

to reveal inadequacies and thus modify the a priori specified family of models. Theoretical characteristics can be
computed from the estimated model parameters to fit the empirical characteristics extracted from the data and used in
the exploratory analysis.

The
para-
met-
ric
ap-
proach
based
on
the
pro-
cess
of
model
build-
ing
is
com-

12 Dempster, A.P., Laird, N.M. et Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal
of the Royal Statistical Society, Series B, 39: 1-38.

26 Guédon, Y., 1998. Analyzing nonstationary discrete sequences using hidden semi- Markov chains. Document de travail du programme
Modélisation des plantes, 5-98. CIRAD, Montpellier, France, 41 pp.

27 Guédon, Y., 1998. Hidden semi-Markov chains: a new tool for analyzing nonstationary discrete sequences. In: 2nd International Symposium
on Semi-Markov models: theory and applications, J. Janssen et N. Limnios (Eds), Compiègne, France 09-11/12/1998, Université de Technologie
de Compiègne, pp. 1-7.

3.3. MTG file 73

mtg Documentation, Release 2.1.2

ple-
mented
by
a
non-
para-
met-

ric approach based on structured data alignment (either sequences or trees). Distance matrices built from the piece by
piece alignments of a sample of structured data can be explored by clustering methods to reveal groups in the sample.

documentation
sta-
tus

Documentation
adapted
from
the
AMAP-
mod
user
man-
ual
ver-
sion
1.8.

3.3.6 Bibliography

3.4 Illustration:
ex-
plor-
ing
an
ap-
ple
tree
or-
chard

Todo: This section has to be validated (e.g., translate aml code into python)

Let
us

74 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

now
il-
lus-
trate
the
us-
age
of
ope-
nalea.mtg
pack-
age
to-
gether
with
other
pack-
ages
such
as
ope-
nalea.sequence_analysis

in a real application. To do this, we shall consider an apple tree orchard and show how a plant architecture database
can be created from observations24. Then, we shall use this database to illustrate the use of specific tools employed to
explore plant architecture databases.

3.4.1 Biological
con-
text
and
data
col-
lec-
tion

The
ap-
pli-
ca-
tion
is
part
of
a
gen-
eral
se-
lec-
tion

24 Godin, C., Guédon, Y. et Costes, E., 1999. Exploration of plant architecture databases with the AMAPmod software illustrated on an apple-tree
bybird family. Agronomie, 19(3/4): 163-184.

3.4. Illustration: exploring an apple tree orchard 75

mtg Documentation, Release 2.1.2

pro-
gram,
con-
ducted
at
INRA
(In-
sti-
tut
Na-

tional de la Recherche Agronomique), and aims to improve apple tree species as regards morphological characters
and more classical criteria such as fruit quality and disease resistance. In this particular example, two apple tree
clones were chosen for their contrasting growth and branching habits. The first clone (‘Wijcik’) exhibits a very
particular growth and branching habit, characterised by short internodes, great diameters and the absence of long
axillary branches. By contrast, the second clone (‘Baujade’) exhibits many long and flexible branches. A population
of 102 hybrids was obtained by crossing these two clones. The objective of this work was to study how morphological
characters, such as the length of the internodes or the number of long lateral branches, are distributed within the
progeny.

Creation
of
the
database:
The
branch-
ing
sys-
tems
borne
by
the
three-
year-
old
an-
nual
shoot
of
the
trunk
is
de-
scribed

for each individual. The branching system is first broken down into axes i.e. linear portions of stem derived from the
same bud. Each axis is then divided into portions created during the same year (called annual shoots). When cessation
and resumption of growth occur within a year, the annual shoot can be split into growth units, i.e. portions created
over the same period (or between two resting periods). Finally, the growth units can be divided into internodes,
i.e. portions of stem between two leaves. Regarding these successive decompositions, a given branching system is
simultaneously considered at four scales. The different plant components and their connections are represented into a
code file as explained previously.

In
or-
der
to

76 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

give
a
quan-
ti-
ta-
tive
idea
of
the
to-
tal
re-
sources
nec-
es-
sary
for
an
ap-
pli-

cation of this size, it should be noted that all the measures were carried out by a team of 6 persons over 5 days. The
collected data, initially recorded on paper, were then computer-entered by 1 person over 20 days using a text editor
and consists of a file of approximately 16000 lines of code. The corresponding MTG is constructed in 45 seconds on
a SGI-INDY workstation. It contains about 65000 components and some 15000 attributes. The overall size of the
database is 7 Mb.

3.4.2 3D
vi-
su-
al-
i-
sa-
tion
of
real
plants

To
build
the
database
as-
so-
ci-
ated
with
the
col-
lected
data,
the
AMAP-

3.4. Illustration: exploring an apple tree orchard 77

mtg Documentation, Release 2.1.2

mod
sys-
tem
is
launched
and
an
MTG
is

built from the encoded plant file:

plant_
→˓database
→˓=
→˓MTG(
→˓"wij.
→˓mtg
→˓")

The
prim-
i-
tive
MTG
at-
tempts
to
build
a
for-
mal
rep-
re-
sen-
ta-
tion
of
the
or-
chard,
check-
ing
for

syntactic and semantic correctness of the code file. If the file is not consistent, the procedure outputs a set of errors
which must be corrected before applying a new syntactic analysis. Once the file is syntactically consistent, the MTG
is built and is available in the variable plant_database. However, for efficiency reasons, the latest constructed MTG
is said to be ‘’active”: it will be considered as an implicit argument for most of the primitives dealing with MTGs.
For example, to obtain the set of vertices representing the plants contained in the database, i.e. vertices at scale 1, the
primitive VtxList is used and applies by default to the active MTG plant_database:

plant_
→˓list
→˓=
→˓VtxList(Scale=1)

78 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

It
is
then
pos-
si-
ble
to
ob-
tain
an
ini-
tial
feed-
back
on
the
col-
lected
data
by
dis-
play-
ing
a

3D geometrical interpretation of a plant from the MTG. This notably allows the user to rapidly browse the overall
database. For instance, a geometric interpretation of the 5th plant in the set of plants described in the MTG can be
computed and plotted using the primitive PlantFrame as follows, (Figure 3-7a):

geom_
→˓struct
→˓=
→˓PlantFrame(plant_
→˓list[4])
Plot(geom_
→˓struct)

Todo: continue to adapt the documenation from here including example here above

Such
re-
con-
struc-
tions
can
be
car-
ried
out
even
if
no
ge-
o-

3.4. Illustration: exploring an apple tree orchard 79

mtg Documentation, Release 2.1.2

met-
ric
in-
for-
ma-
tion
is
avail-
able

in the collected data. In this case, algorithms are used to infer the missing data where possible (otherwise, default
information is used)19. In other cases, plants are precisely digitised and the algorithms can provide accurate 3D
geometric reconstructions7224648.

Apart
from
giv-
ing
a
nat-
u-
ral
view
of
the
plants
con-
tained
in
the
database,
these
3D
re-
con-
struc-
tions
play

another important role: they can be used as a support to graphically visualise how various sorts of information are
distributed in the plant architecture. Figure 3-7b for example shows the organisation of plant components according to
their branching order (trunk components have order 0, branch components have order 1, etc.). This would be obtained
by the following commands:

color_
→˓order(_
→˓x)
→˓=
→˓Switch
→˓Order(_
→˓x)
→˓Case
→˓0:
→˓MediumGrey

(continues on next page)

19 Godin, C., Bellouti, S. et Costes, E., 1996. Restitution virtuelle de plantes réelles : un nouvel outil pour l’aide à l’analyse de données botaniques
et agronomiques. In: L’interface des mondes réels et virtuels, 5èmes Journées Internationales Informatiques, Montpellier, France 22-24/05/96, pp.
369-378.

7 Costes, E., Sinoquet, H., Godin, C. et Kelner, J.J., 1999. 3D digitizing based on tree topology : application to study th variability of apple
quality within the canopy. Acta Horticulturae, in press.

22 Godin, C., Costes, E. et Caraglio, Y., 1997. Exploring plant topology structure with the AMAPmod software : an outline. Silva Fennica, 31(3):
355-366.

46 Sinoquet, H., Adam, B., Rivet, P. et Godin, C., 1998. Interactions between light and plant architecture in an agroforestry walnut tree. Agro-
forestry Forum, 8(2): 37-40.

48 Sinoquet, H., Rivet, P. et Godin, C., 1997. Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica,
31(3): 265-273.

80 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓Case
→˓1:
→˓DarkGrey
→˓Case
→˓2:
→˓LightGrey
→˓Case
→˓3:
→˓Black

→˓

→˓

→˓

→˓Default:
→˓White
Plot(geom_
→˓struct,
→˓

→˓Color=color_
→˓order)

This
rep-
re-
sen-
ta-
tion
em-
pha-
sises
dif-
fer-
ent
in-
for-
ma-
tions
re-
lated
to
the
branch-
ing
or-
der:

it can be seen in Figure 3-7b that the maximum branching order is 4, that this order is reached only once in the tree
crown, and that this occurs at a floral site (black component).

The
use
of

3.4. Illustration: exploring an apple tree orchard 81

mtg Documentation, Release 2.1.2

the
3D
rep-
re-
sen-
ta-
tion
of
plant
struc-
ture
can
also
be
il-
lus-
trated
in
the
con-
text

of plant growth analysis. The year in which each component grew can be retrieved from a careful analysis of the
plant morphological makers. If this information is recorded in the MTG, it is then possible to colour the different
components accordingly. Figure 3-7c shows, for instance, that a branch appeared on the trunk during the first year of
growth. This information can then be linked to other data, e.g. the branching order of a component or the number of
fruits borne by a component, and thus provides deeper insight into the plant growth process.

Thanks
to
the
mul-
ti-
scale
na-
ture
of
the
plant
rep-
re-
sen-
ta-
tion,
more
or
less
de-
tailed
in-
for-
ma-

tion can be projected onto the plant structure. Let us consider again the context of plant growth analysis. Plant growth
is characterised by rhythms that result in the production of long internodes during periods of high activity and short
internodes during rest periods (indicated on the plant by scares close together). These informations, at the level of

82 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

internodes, can be projected onto the plant 3D structure (Figure 3-7d). Like the year of growth, this information
enables us to access plant growth dynamics, but now, at an intra-year scale.

Finally,
an-
other
use
for
the
vir-
tual
re-
con-
struc-
tion
of
mea-
sured
plants
is
il-
lus-
trated
in
Fig-
ure
3-

8a and 8b. These plants have been reconstructed from the MTG at the scale of each leafy internode. This enables us
to obtain a natural representation of the plant which can be used for instance in models that are intended to describe
the interaction of the plant and its environment (e.g. light) at a detailed level, e.g.41. More generally, the user can plot
a set of plants from the database (Figure 3-9):

orchard
→˓=
→˓aml.
→˓PlantFrame(plant_
→˓list)
aml.
→˓Plot(orchard)

3.4.3 Extraction
of
data
sam-
ples

Visualizing
in-
for-
ma-
tions

41 Rapidel, B., 1995. Etude expérimentale et simulation des transferts hydriques dans les plantes individuelles. Application au caféier (Coffea
arabica L.). Thèse Doctorat, Université des Sciences et Techniques du Languedoc (USTL), Montpellier, France, 246 pp.

3.4. Illustration: exploring an apple tree orchard 83

mtg Documentation, Release 2.1.2

pro-
jected
onto
the
3D
rep-
re-
sen-
ta-
tion
of
plants
is
one
way
to
ex-
plore
the

database. More quantitative explorations can be carried out and the most simple of these consists of studying how
specific characters are distributed in the architecture of the plant population. To do this, samples of components are
created corresponding to some topological or morphological criteria, and the distributions of one or several characters
(target characters) are studied on this sample. This data extraction always follows the three following steps:

Firstly,
a
sam-
ple
of
com-
po-
nents
is
cre-
ated
to
study
the
tar-
get
char-
ac-
ter.
Sec-
ondly,
the
char-
ac-

ter itself is defined. It may be more or less directly derived from the data recorded in the field. For example, it is
straightforward to define the diameter of a component if this has been measured in the field. On the other hand, the
maximum branching order of the components that are borne by a given component needs some computation. Thirdly,
the target character is computed for each component of the selected sample of components.

The
out-

84 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

put
of
these
three
op-
er-
a-
tions
is
a
set
of
val-
ues
that
can
be
anal-
ysed
and
vi-
su-

alised in various ways. Let us assume for instance that we wish to determine the distribution of the number of
internodes produced during a specific growth period for all the plants in the database. It is first necessary to determine
the sample of components on which we wish to study this distribution. In our case, we assume that we are interested
in the growth units of the trunk that are produced during the first year of growth. This would be written as:

sample
→˓=
→˓Foreach
→˓_
→˓component
→˓In
→˓growth_
→˓unit_
→˓list:

→˓

→˓

→˓

→˓Select(_
→˓component,
→˓Order(_
→˓component)
→˓==
→˓0
→˓And

→˓

→˓

→˓

→˓Index(_
→˓component)
→˓==
→˓90)

3.4. Illustration: exploring an apple tree orchard 85

mtg Documentation, Release 2.1.2

The
vari-
able
sam-
ple
thus
con-
tains
the
set
of
growth
units
whose
or-
der
is
0
(i.e.
which
are
parts
of
trunks)

and whose growth year is 1990 (assuming 1990 corresponds to the first year of growth). The second step consists of
defining the target character. This can be done by defining a corresponding function:

nb_
→˓of_
→˓internodes
→˓=
→˓lambda
→˓x:
→˓len(Components(x))

The
num-
ber
of
in-
tern-
odes
of
a
com-
po-
nent
_x
(as-
sumed
to
be
a
growth
unit)

86 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

is
de-
fined
as

the size of the set of components that compose this growth unit _x (assuming that growth units are composed of in-
ternodes). Finally, this function is applied to each component in the previously selected sample and the corresponding
histogram is plotted (Figure 3-10):

sample_
→˓values
→˓=
→˓Histogram(Foreach
→˓_
→˓component
→˓In
→˓sample
→˓:nb_
→˓of_
→˓internodes(_
→˓component))
Plot(sample_
→˓values)

This
ex-
am-
ple
il-
lus-
trates
the
kind
of
in-
ter-
ac-
tion
a
user
may
ex-
pect
from
the
ex-
plo-
ration

of tree architecture. In the field, the growth units of the trunks produced during the first year of growth present a
variable length, ranging roughly from 10 to 100 internodes. However, the quantitative exploration of the database
shows that the histogram exhibits two relatively well-separated sub-populations of components (Figure 3-10). The
sub-population of short components corresponds to the first annual shoots of the trunk, made up of two successive
intra-annual growth units, while the sub-population of long components corresponds to the first annual shoots made
up of a single growth unit.

In
or-

3.4. Illustration: exploring an apple tree orchard 87

mtg Documentation, Release 2.1.2

der
to
sep-
a-
rate
and
char-
ac-
terise
these
two
sub-
populations,
we
can
make
the
as-
sump-
tion
that
the

global distribution is a mixture of two parametric distributions, more precisely, two negative binomial distributions.
The parameters of this model can be estimated from the above histogram as follows:

mixture
→˓=
→˓Estimate(sample_
→˓value,
→˓

→˓

→˓"MIXTURE
→˓",
→˓

→˓"NEGATIVE_
→˓BINOMIAL
→˓",
→˓

→˓

→˓"NEGATIVE_
→˓BINOMIAL
→˓")
Plot(mixture)

For
all
para-
met-
ric
mod-
els
in
the
sys-
tem,
the

88 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

func-
tion
Es-
ti-
mate
per-
forms
both
pa-
ram-
e-
ter

estimation and computation of various quantities (likelihood of the observed data for the estimated model, theoretical
characteristics, etc) involved in the validation stage. As demonstrated by the cumulative distribution functions in
Figure 3-11b, the data are well fitted by the estimated mixture of two negative binomial distributions. The weights
of the two components of the mixture are very close (0.49 / 0.51), the first being centred on 21 internodes and the
second on 53 internodes (Figure 3-11a). Due to the small overlap of these two mixture components (Figure 3-11a),
the extracted sample can be optimally split up into two optimal sub-populations with a threshold fixed at 37.

As
il-
lus-
trated
in
this
ex-
am-
ple,
us-
ing
AMAP-
mod,
the
user
can
query
the
database,
make
as-
sump-
tions
and

look for data regularities. This interactive exploration process enables the user to build a rich and detailed mental
representation of the architectural database, which relies on various complementary viewpoints.

3.4. Illustration: exploring an apple tree orchard 89

mtg Documentation, Release 2.1.2

3.4.4 Extraction
and
anal-
y-
sis
of
bi-
o-
log-
i-
cal
se-
quences

The
pre-
vi-
ous
sec-
tion
il-
lus-
trates
the
ex-
trac-
tion
of
a
sim-
ple
sam-
ple
type,
made
up
of
nu-

meric values. In this section, we consider a more complex sample type, made up of sequences of values. For example,
in the apple tree database, let us consider sequences of lateral productions along trunks. Our aim is to analyse how
lateral branches are distributed along the trunks of hybrids.

The
se-
quences
are
coded
as
fol-
lows:
for
each

90 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

plant,
the
90
an-
nual
shoot
of
the
trunk
is
de-
scribed
node
by

node from the base to the top. Each node is qualified by the type of lateral production (latent bud: 0, one-year-delayed
short shoot: 1, one-year-delayed long shoot: 2 and immediate shoot: 3). This sample of sequences is built as follows:

AML>
→˓

→˓seq
→˓=
→˓Foreach
→˓_
→˓component
→˓In
→˓growth_
→˓unit_
→˓sample
→˓:
Foreach
→˓_
→˓node
→˓In
→˓Axis(_
→˓component,
→˓

→˓Scale
→˓-
→˓>
→˓

→˓4)
→˓:
Switch
→˓lateral_
→˓type(_
→˓node)
Case
→˓BUD:
→˓0
→˓Case
→˓SHORT:
→˓1
→˓Case
→˓LONG:
→˓2
Case
→˓IMMEDIATE:
→˓3
→˓Default:
→˓Undef

(continues on next page)

3.4. Illustration: exploring an apple tree orchard 91

mtg Documentation, Release 2.1.2

(continued from previous page)

The
AML
vari-
able
growth_unit_sample
con-
tains
the
set
of
growth
units
of
in-
ter-
est
(as-
sumed
to
be
se-
lected
be-
fore).

For each component in this set, the array of nodes that compose its main axis is browsed by the second Foreach
construct. Finally, for each node, a function lateral_type() (defined elsewhere) is used to encode the nature of the
lateral production at that node.

Figure
3-
12
il-
lus-
trates
the
di-
ver-
sity
of
an-
nual
shoot
branch-
ing
struc-
tures
en-
coun-
tered
in
the
stud-

92 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

ied hybrid family, which results from the different branching habits of the two parents. In our context, we wish to
characterise and classify the hybrids according to their branching habits. The difficulty arises from the fact that the
branching pattern is made of a succession of branching zones which are not characterised by a single type of lateral
production but by a combination of types (e.g. short shoots interspersed with latent buds). We shall use this example
to illustrate how parametric models may be used in AMAPmod to identify and characterize successive branching
zones along these annual shoots.

We
as-
sume
that
se-
quences
have
a
two-
level
struc-
ture,
where
an-
nual
shoots
are
made
up
of
a
suc-
ces-
sion

of zones, each zone being characterised by a particular combination of lateral production types. To model this two-
level structure, we use a hierarchical model with two levels of representation. At the first level, a semi-Markov chain
(Markov chain with null self-transitions and explicit state occupancy distributions) represents the succession of zones
along the annual shoots and the lengths of each zone62829. Each zone is represented by a state of the Markov chain
and the succession of zones are represented by transitions between states. The second level consists of attaching to
each state of the semi-Markov chain a discrete distribution which represents the lateral productions types observed in
the corresponding zone. The whole model is called a hidden semi-Markov chain2627.

The
model
pa-
ram-
e-
ters

6 Costes, E. et Guedon, Y., 1997. Modelling the sylleptic branching on one-year-old trunks of apple cultivars. Journal of the American Society
for Horticultural Science, 122(1): 53-62.

28 Guédon, Y., Barthélémy, D. et Caraglio, Y., 1999. Analyzing spatial structures in forests tree architectures. In: Salamandra (Ed) Empirical and
process-based models for forest tree and stand growth simulation, Oeiras, Portugal 21-27/09/1997, pp. 23-42.

29 Guédon, Y. et Costes, E., 1999. A statistical approach for analyszing sequences in fruit tree architecture. In: Wagenmakers P.S., van der
Werf W., Blaise Ph. (Eds), 5th International Symposium on Computer modelling in fruit research and orchard management, Wageningen, The
Netherlands 28-31/07/1998. Acta Horticulturae, pp. 271-280.

26 Guédon, Y., 1998. Analyzing nonstationary discrete sequences using hidden semi- Markov chains. Document de travail du programme
Modélisation des plantes, 5-98. CIRAD, Montpellier, France, 41 pp.

27 Guédon, Y., 1998. Hidden semi-Markov chains: a new tool for analyzing nonstationary discrete sequences. In: 2nd International Symposium
on Semi-Markov models: theory and applications, J. Janssen et N. Limnios (Eds), Compiègne, France 09-11/12/1998, Université de Technologie
de Compiègne, pp. 1-7.

3.4. Illustration: exploring an apple tree orchard 93

mtg Documentation, Release 2.1.2

are
es-
ti-
mated
from
the
ex-
tracted
sam-
ple
of
se-
quences
by
the
func-
tion
Es-

timate:

hsmc
→˓=
→˓Estimate(seq,
→˓

→˓

→˓"HIDDEN_
→˓SEMI-
→˓MARKOV
→˓",
→˓

→˓initial_
→˓hsmc,
→˓Segmentation
→˓=
→˓True)

The
first
ar-
gu-
ment
seq
rep-
re-
sents
the
ex-
tracted
se-
quences,
“HIDDEN_SEMI-
MARKOV”
spec-
i-
fies

94 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

the
fam-
ily
of
mod-

els and initial_hsmc is an initial hidden semi-Markov chain which summarises the hypotheses made in the specification
stage. An optimal segmentation of the sequences is required by the optional argument Segmentation set at True.

The
hid-
den
semi-
Markov
chain
built
from
the
90
an-
nual
shoots
of
the
102
hy-
brids
is
de-
picted
in
Fig-
ure

3-13 with the following convention: each state is represented by a box numbered in the lower right corner. The
possible transitions between states are represented by directed edges with the attached probabilities noted nearby.
Transient states are surrounded by a single line while recurrent states are surrounded by a double line. State i is said
to be recurrent if starting from state i, the first return to state i always occurs after a finite number of transitions. A
nonrecurrent state is said to be transient. The state occupancy distributions which represent the length of the zones
in terms of number of nodes are shown above the corresponding boxes. The possible lateral productions observed in
each zone are indicated inside the boxes, the font sizes being roughly proportional to the observation probabilities(for
state 3, these probabilities are 0.1, 0.62 and 0.28 while for state 4, these probabilities are 0.01, 0.07 and 0.92 for latent
bud, one-year-delayed short shoot and one-year-delayed long shoot respectively). State 0 which is the only transient
state is also the only initial state as indicated by the edge entering in state 0. State 0 represents the basal non-branched
zone of the annual shoots. The remaining five states constitute a recurrent class which corresponds to the stationary
phase of the sequences.

Building
a
para-
met-
ric
model
gives
us
a
global

3.4. Illustration: exploring an apple tree orchard 95

mtg Documentation, Release 2.1.2

in-
sight
into
the
struc-
ture
of
the
90
an-
nual
shoot
of
the

trunk for the 102 hybrids. The adequacy of the estimated model to the data is checked by examining the fitting of
theoretical characteristic distributions computed from the model parameters to the corresponding observed charac-
teristic distributions extracted from the data. Counting characteristic distributions for example focus on the number
of occurrences of a given feature per sequence. The two features of interest are the number of series (or clumps) and
the number of occurrences of a given lateral production type per sequence. The fits of counting distributions (Figure
3-14) can be plotted by the following function:

Plot(hsmc,
→˓

→˓

→˓"Counting
→˓")

In
ad-
di-
tion,
the
op-
ti-
mal
seg-
men-
ta-
tion
of
the
ob-
served
se-
quences
in
suc-
ces-
sive
zones
(Fig-

ure 3-12) can be extracted from the model as a by-product of estimation of model parameters by the following function:

segmented_
→˓seq
→˓=
→˓ExtractData(hsmc)

(continues on next page)

96 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

segmented_seq
rep-
re-
sents
the
ob-
served
se-
quences
aug-
mented
by
a
vari-
able
which
con-
tains
the
cor-
re-
spond-
ing
op-

timal state sequences (Figure 3-12). A careful examination of this optimal segmentation help us highlight a discrimi-
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between
hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long
branching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by
the function ValueSelect relying on the absence/presence of state 4 on the 1st variable:

wijcik_
→˓seq
→˓=
→˓ValueSelect(segmented_
→˓seq,
→˓

→˓1,
→˓

→˓4,
→˓Mode
→˓-
→˓>
→˓

→˓Reject)
baujade_
→˓seq
→˓=
→˓ValueSelect(segmented_
→˓seq,
→˓

→˓1,
→˓

→˓4,
→˓Mode
→˓-
→˓>
→˓

→˓Keep)

(continues on next page)

3.4. Illustration: exploring an apple tree orchard 97

mtg Documentation, Release 2.1.2

(continued from previous page)

Simply
count-
ing
the
num-
ber
of
ax-
il-
lary
long
shoots
per
se-
quence
would
not
have
been
suf-
fi-
cient,
since
for

a given number of long shoots, these can be either scattered (Figure 3-12c) or aggregated in a dense zone (Figure
3-12d). This is confirmed by comparing the empirical distributions of the number of series with the number of
occurrences of axillary long shoots per sequence extracted from the two hybrid sub-populations. The empirical
distributions of the number of series/number of occurrences of axillary long shoots (coded by 2) per sequence for the
sub-population close to the Wijcik parent can be simultaneously plotted by the following function (Figure 3-15a):

AML>
→˓

→˓Plot(ExtractHistogram(wijcik_
→˓seq,
→˓

→˓

→˓"NbSeries
→˓",
→˓

→˓2,
→˓

→˓2),
→˓

→˓ExtractHistogram(wijcik_
→˓seq,
→˓

→˓

→˓"NbOccurrences
→˓",
→˓

→˓2,
→˓

→˓2))

98 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

These
em-
pir-
i-
cal
dis-
tri-
bu-
tions
are
very
sim-
i-
lar
for
the
sub-
population
close
to
the
Wi-
j-
cik

parent, (Figure 3-15a). Most of the series are thus composed of a single long shoot. These empirical distributions are
very different for the sub-population close to the Baujade parent, (Figure 3-15b). In this case, the series are frequently
composed of several successive long shoots.

The
stud-
ied
sam-
ple
of
se-
quences
en-
com-
passes
a
broad
spec-
trum
of
branch-
ing
habits
rang-
ing
from
the
Wi-

jcik to the Baujade parent one. Hence, the building of a parametric model is mainly used for identifying a
discrimination rule to separate the initial sample of branching sequences into two sub-samples.

3.4. Illustration: exploring an apple tree orchard 99

mtg Documentation, Release 2.1.2

documentation
sta-
tus

Documentation
adapted
from
the
AMAP-
mod
user
man-
ual
ver-
sion
1.8.

3.4.5 Bibliography

3.5 Tutorial:
Cre-
ate
MTG
file
from
scratch

This
tu-
to-
rial
briefly
in-
tro-
duces
the
main
fea-
tures
of
the
pack-
age
and
should
show

100 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

you
the
con-
tents
and

potential of the openalea.mtg library.

All
the
ex-
am-
ples
can
be
tested
in
a
Python
in-
ter-
preter.

3.5.1 MTG
cre-
ation

Let
us
con-
sider
the
fol-
low-
ing
ex-
am-
ple:

1 import
→˓openalea.
→˓mtg
→˓as
→˓mtg

2

3 g
→˓=
→˓mtg.
→˓MTG()

4

5 print
→˓len(g)

6 print
→˓g.
→˓nb_
→˓vertices()

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 101

mtg Documentation, Release 2.1.2

(continued from previous page)

7 print
→˓g.
→˓nb_
→˓scales()

8

9 root
→˓=
→˓g.
→˓root

10 print
→˓g.
→˓scale(root)

•
First,
the
pack-
age
is
im-
ported
(line
1).

•
Then,
a
mtg
is
in-
stan-
ti-
ated
with-
out
pa-
ram-
e-
ters
(line
3).

•
However,
as
for
a
Tree,
the
mtg
is
not
empty
(line
5-

102 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

7).

•
There
is
al-
ways
a
root
node
at
scale
0
(line
9-
10).

3.5.2 Simple
edi-
tion

We
add
a
com-
po-
nent
root1
to
the
root
node,
which
will
be
the
root
node
of
the
tree
at
the
scale
1.

1 root1
→˓=
→˓g.
→˓add_
→˓component(root)

2

3

→˓#
→˓Edit
→˓the
→˓tree
→˓at
→˓scale
→˓1
→˓by
→˓adding
→˓three
→˓children

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 103

mtg Documentation, Release 2.1.2

(continued from previous page)

4

→˓#
→˓to
→˓the
→˓vertex
→˓`root1`.
→˓

5 v1
→˓=
→˓g.
→˓add_
→˓child(root1)

6 v2
→˓=
→˓g.
→˓add_
→˓child(root1)

7 v3
→˓=
→˓g.
→˓add_
→˓child(root1)

8

9 g.
→˓parent(v1)
→˓==
→˓root1

10 g.
→˓complex(v1)
→˓==
→˓root

11 v3
→˓in
→˓g.
→˓siblings(v1)

3.5.3 Traversing
the
mtg
at
one
scale

The
mtg
can
be
tra-
versed
at
any
scales
like

104 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

a
reg-
u-
lar
tree.
Their
are
three
traver-
sal
al-
go-
rithms
work-

ing on Tree data structures (container_algo_traversal):

•
pre_order

•
post_order

•
level_order

These
meth-
ods
take
as
pa-
ram-
e-
ters
a
tree
like
data
struc-
ture,
and
a
ver-
tex.
They
will
tra-
verse
the

subtree rooted on this vertex in a specific order. They will return an iterator on the traversed vertices.

1 from
→˓openalea.
→˓container.
→˓traversal.
→˓tree
→˓import
→˓*

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 105

mtg Documentation, Release 2.1.2

(continued from previous page)

2

3 print
→˓list(g.
→˓components(root))

4

5 print
→˓list(pre_
→˓order(g,
→˓

→˓root1))
6 print

→˓list(post_
→˓order(g,
→˓

→˓root1))
7 print

→˓list(level_
→˓order(g,
→˓

→˓root1))

Warning:
On
MTG
data
struc-
ture,
meth-
ods
that
re-
turn
col-
lec-
tion
of
ver-
tices
al-
ways
re-
turn
an
it-
er-

ator rather than list, array, or set.

You
have
to
con-
vert
the

106 Chapter 3. MTG User Guide

https://docs.python.org/3.4/library/stdtypes.html#list
https://docs.python.org/3.4/library/stdtypes.html#set

mtg Documentation, Release 2.1.2

it-
er-
a-
tor
into
a
list
if
you
want
to
dis-
play
it,
or
com-
pute
its

length.

>>> print len(g.components(root)) #doctest: +SKIP
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: object of type 'generator' has no len()

Use
rather:

>>> components = list(g.components(root)) #doctest: +SKIP
>>> print components #doctest: +SKIP
[1, 2, 3, 4]

3.5.4 Full
ex-
am-
ple:
how
to
cre-
ate
an
MTG

1 from
→˓openalea.
→˓mtg.
→˓mtg
→˓import
→˓*

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 107

https://docs.python.org/3.4/library/stdtypes.html#list

mtg Documentation, Release 2.1.2

Fig. 12: Figure 1: Graphical representation of the MTG file code_file2.mtg used as an input file to all examples
contained in this page

(continued from previous page)

2 from
→˓openalea.
→˓mtg.
→˓aml
→˓import
→˓*

3

4

5 g
→˓=
→˓mtg.
→˓MTG()

6 plant_
→˓id
→˓=
→˓g.
→˓add_
→˓component(g.
→˓root,
→˓

→˓label=
→˓'P1
→˓')

7

8

→˓#first
→˓u1

9 u1
→˓=
→˓g.
→˓add_
→˓component(plant_
→˓id,
→˓

→˓label=
→˓'U1
→˓',
→˓

→˓Length=10,
→˓

→˓Diameter=5.
→˓9)

(continues on next page)

108 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

10 i
→˓=
→˓g.
→˓add_
→˓component(u1,
→˓label=
→˓'I1
→˓'
→˓)

11 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I2
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

12 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I3
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

13 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I4
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

14 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I5
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 109

mtg Documentation, Release 2.1.2

(continued from previous page)

15 i6
→˓=
→˓i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I6
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

16

17

→˓#u2
→˓branch

18 i,
→˓u2
→˓=
→˓g.
→˓add_
→˓child_
→˓and_
→˓complex(i6,
→˓label=
→˓'I20
→˓',
→˓

→˓edge_
→˓type=
→˓'+
→˓',
→˓

→˓Length=7,
→˓

→˓Diameter=3.
→˓5
→˓)

19 g.
→˓node(u2).
→˓label=
→˓'U2
→˓'

20 g.
→˓node(u2).
→˓edge_
→˓type=
→˓'+
→˓'

21 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I21
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

(continues on next page)

110 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

22 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I22
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

23 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I23
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

24 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I24
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

25

26

→˓#u3
→˓branch

27 i,
→˓u3
→˓=
→˓g.
→˓add_
→˓child_
→˓and_
→˓complex(i,
→˓label=
→˓'I25
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓',
→˓

→˓Length=4,
→˓

→˓Diameter=2.
→˓1)

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 111

mtg Documentation, Release 2.1.2

(continued from previous page)

28 g.
→˓node(u3).
→˓label=
→˓'U3
→˓'

29 g.
→˓node(u3).
→˓edge_
→˓type=
→˓'
→˓<
→˓'

30 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I25
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

31 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I26
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

32 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I27
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

(continues on next page)

112 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

33 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I28
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

34 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I29
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

35

36

→˓#continue
→˓u1

37 i
→˓=
→˓g.
→˓add_
→˓child(i6,
→˓label=
→˓'I7
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

38 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I8
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 113

mtg Documentation, Release 2.1.2

(continued from previous page)

39 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I9
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

40

41

→˓#
→˓u2
→˓main
→˓axe

42 i,
→˓c
→˓=
→˓g.
→˓add_
→˓child_
→˓and_
→˓complex(i,
→˓label=
→˓'I10
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓,
→˓

→˓Length=8,
→˓

→˓Diameter=4.
→˓3)

43 g.
→˓node(c).
→˓label=
→˓'U2
→˓'

44 g.
→˓node(c).
→˓edge_
→˓type=
→˓'
→˓<
→˓'

45 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I11
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

(continues on next page)

114 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

46 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I12
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

47 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I13
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

48 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I14
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

49 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I15
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 115

mtg Documentation, Release 2.1.2

(continued from previous page)

50

51

52

→˓#
→˓u3
→˓main
→˓axe

53 i,
→˓c
→˓=
→˓g.
→˓add_
→˓child_
→˓and_
→˓complex(i,
→˓label=
→˓'I16
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓',
→˓

→˓Length=7.
→˓5,
→˓

→˓diameter=3.
→˓9
→˓)

54 g.
→˓node(c).
→˓label=
→˓'U3
→˓'

55 g.
→˓node(c).
→˓edge_
→˓type=
→˓'
→˓<
→˓'

56 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I17
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)(continues on next page)

116 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

57 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I18
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

58 i
→˓=
→˓g.
→˓add_
→˓child(i,
→˓label=
→˓'I19
→˓',
→˓

→˓edge_
→˓type=
→˓'
→˓<
→˓'
→˓)

59

60

61

→˓#fat_
→˓mtg(g)

62

63 print
→˓g.
→˓is_
→˓valid()

64 print
→˓g

65

66 for
→˓id
→˓in
→˓g.
→˓vertices():

67

→˓

→˓

→˓

→˓print
→˓g[id]

68 from
→˓openalea.
→˓mtg.
→˓io
→˓import
→˓*

(continues on next page)

3.5. Tutorial: Create MTG file from scratch 117

mtg Documentation, Release 2.1.2

(continued from previous page)

69

70 print
→˓list(g.
→˓property_
→˓names())

71 properties
→˓=
→˓[(p,
→˓

→˓

→˓'REAL
→˓')
→˓for
→˓p
→˓in
→˓g.
→˓property_
→˓names()
→˓if
→˓p
→˓not
→˓in
→˓[
→˓'edge_
→˓type
→˓',
→˓

→˓

→˓'index
→˓', 'label']]

72 print
→˓properties

73 mtg_
→˓lines
→˓=
→˓write_
→˓mtg(g,
→˓

→˓properties)
74 f

→˓=
→˓open(
→˓'test.
→˓mtg
→˓',
→˓

→˓

→˓'w
→˓')

75 f.
→˓write(mtg_
→˓lines)

76 f.
→˓close()

77

Authors

118 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Christophe
Pradal
<christophe
pradal
__at__
cirad
fr>,
Thomas
Coke-
laer
<thomas
coke-
laer
__at__
sophia
in-
ria
fr>

3.6 PlantFrame
(3D
re-
con-
struc-
tion
of
plant
ar-
chi-
tec-
ture)

Section
con-
tents

In
this
sec-
tion,
we
in-
tro-
duce

3.6. PlantFrame (3D reconstruction of plant architecture) 119

mtg Documentation, Release 2.1.2

the
Plant-
Frame
vo-
cab-
u-
lary
that
we
use
through-
out
vplants
and
give
a

series of examples.

3.6.1 The
prob-
lem
set-
ting

PlantFrame
is
a
method
to
com-
pute
the
ge-
om-
e-
try
of
each
or-
gan
of
a
Plant
Ar-
chi-
tec-
ture.
Geoemtri-

cal data is associated to some vertices of the architecture (aka MTG). But often, geometrical information is missing
on some vertex. Constraints have to be solved to compute missing values.

The stages of the PlantFrame are:

120 Chapter 3. MTG User Guide

http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=documentation:demo:mtg_reconstruction&s{[}{]}=plantframe
http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=documentation:demo:mtg_reconstruction&s{[}{]}=plantframe

mtg Documentation, Release 2.1.2

1.
Insert
a
scale
at
the
axis
level.

2.
Project
all
the
con-
straints
at
the
finer
scale.

3.
Apply
dif-
fer-
ent
Knowl-
edge
Sources
(i.e.
KS)
on
the
MTG
to
com-
pute
the
val-
ues
at
some
nodes.

4.
Solve
the
con-
straints.

5.
Visualise
the
ge-
om-

3.6. PlantFrame (3D reconstruction of plant architecture) 121

mtg Documentation, Release 2.1.2

e-
try
us-
ing
a
3D
Tur-
tle.

3.6.2 Where
are
the
data?

The
tu-
to-
rial
pack-
age
comes
with
a
few
datasets.
The
data
are
in
share/data/PlantFrame
di-
rec-
tory
from
the
root.

>
→˓>
→˓>
→˓

→˓import
→˓openalea.
→˓mtg
>
→˓>
→˓>
→˓

→˓from
→˓openalea.
→˓deploy.
→˓shared_
→˓data
→˓import
→˓shared_
→˓data

(continues on next page)

122 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

>
→˓>
→˓>
→˓

→˓import
→˓vplants.
→˓tutorial
>
→˓>
→˓>
→˓

→˓data
→˓=
→˓shared_
→˓data(vplants.
→˓tutorial)/
→˓

→˓'PlantFrame
→˓'

3.6.3 Visualisation
of
a
dig-
i-
tized
Tree

First,
we
load
the
dig-
i-
tized
Wal-
nut
noylum2.
mtg

>
→˓>
→˓>
→˓

→˓from
→˓openalea.
→˓mtg
→˓import
→˓*
>
→˓>
→˓>
→˓

→˓g
→˓=
→˓MTG(data/
→˓

→˓'noylum2.
→˓mtg
→˓')

(continues on next page)

3.6. PlantFrame (3D reconstruction of plant architecture) 123

mtg Documentation, Release 2.1.2

(continued from previous page)

Then,
a
file
con-
tain-
ing
a
set
of
de-
fault
ge-
o-
met-
ric
pa-
ram-
e-
ters
is
loaded
to
build
a

DressingData (walnut.drf)

>
→˓>
→˓>
→˓

→˓drf
→˓=
→˓data/
→˓

→˓'walnut.
→˓drf
→˓'
>
→˓>
→˓>
→˓

→˓dressing_
→˓data
→˓=
→˓dresser.
→˓dressing_
→˓data_
→˓from_
→˓file(drf)

Another
so-
lu-

124 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

tion
is
to
cre-
ate
the
de-
fault
pa-
ram-
e-
ters
di-
rectly

::

>
→˓>
→˓>
→˓

→˓dressing_
→˓data
→˓=
→˓plantframe.
→˓DressingData(DiameterUnit=10)

Geometric
pa-
ram-
e-
ters
are
miss-
ing.
How
to
com-
pute
them?
Use
the
Plant-
Frame,
a
ge-
o-
met-
ric
solver
work-

ing on multiscale tree structure.

Create
the
solver

3.6. PlantFrame (3D reconstruction of plant architecture) 125

mtg Documentation, Release 2.1.2

and
solve
the
prob-
lem

>
→˓>
→˓>
→˓

→˓pf
→˓=
→˓plantframe.
→˓PlantFrame(g,
→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓TopDiameter=
→˓'TopDia',

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓DressingData
→˓= dressing_data)

(continues on next page)

126 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

Visualise
the
plant
in
3D

>
→˓>
→˓>
→˓

→˓pf.
→˓plot(gc=True)

3.6. PlantFrame (3D reconstruction of plant architecture) 127

mtg Documentation, Release 2.1.2

3.6.4 Simple
vi-
su-
al-
i-
sa-
tion
of
a
monopo-
dial
plant

First,
we
load
the
MTG
monopodial_plant.
mtg

>
→˓>
→˓>
→˓

→˓from
→˓openalea.
→˓mtg
→˓import
→˓*
>
→˓>
→˓>
→˓

→˓g
→˓=
→˓MTG(data/
→˓

→˓'monopodial_
→˓plant.
→˓mtg
→˓')

>
→˓>
→˓>
→˓

→˓def
→˓coloring(mtg,
→˓

→˓vertex):

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓try:

(continues on next page)

128 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓mtg.
→˓property(
→˓'diam
→˓')[vertex]

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓return
→˓

→˓"g
→˓"

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓except:
→˓return
→˓

→˓"r
→˓"

>
→˓>
→˓>
→˓

→˓def
→˓legend(mtg,
→˓

→˓vertex):

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓try:

(continues on next page)

3.6. PlantFrame (3D reconstruction of plant architecture) 129

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓return
→˓

→˓"diam:
→˓

→˓"+str(mtg.
→˓property(
→˓'diam
→˓')[vertex])

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓except:
→˓return
→˓

→˓"diam:
→˓NA
→˓"

>
→˓>
→˓>
→˓

→˓def
→˓label(mtg,
→˓

→˓vertex):

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓return
→˓mtg.
→˓label(vertex)

>
→˓>
→˓>
→˓

→˓g.
→˓plot(roots=4,
→˓

→˓node=dict(fc=coloring,
→˓

→˓label=label,
→˓

→˓legend=legend),
→˓

→˓prog=
→˓"dot
→˓")

(continues on next page)

130 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

user/images/monopod2d1.png

>
→˓>
→˓>
→˓

→˓def
→˓legend(mtg,
→˓

→˓vertex):

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓try:

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓return
→˓

→˓"diam:
→˓

→˓"+str(mtg.
→˓property(
→˓'diam
→˓')[vertex])

(continues on next page)

3.6. PlantFrame (3D reconstruction of plant architecture) 131

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓except:
→˓return
→˓

→˓"diam:
→˓NA
→˓"

>
→˓>
→˓>
→˓

→˓g.
→˓plot(roots=4,
→˓

→˓node=dict(fc=coloring,
→˓

→˓label=label,
→˓

→˓legend=legend),
→˓

→˓prog=
→˓"dot
→˓")

132 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

user/images/monopod2d2.png

The
mtg
monopo-
dial_plant.mtg
is
loaded.
To
draw
it,
just
run:

>
→˓>
→˓>
→˓

→˓pf
→˓=
→˓plantframe.
→˓PlantFrame(g,
→˓

→˓TopDiameter=
→˓'diam
→˓')

(continues on next page)

3.6. PlantFrame (3D reconstruction of plant architecture) 133

mtg Documentation, Release 2.1.2

(continued from previous page)

>
→˓>
→˓>
→˓

→˓pf.
→˓plot()

You
can
also
de-
fine
a
func-
tion
to
com-
pute

134 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

the
di-
am-
e-
ter:

>
→˓>
→˓>
→˓

→˓def
→˓diam(v):

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓d
→˓=
→˓g.
→˓node(v).
→˓diam

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓return
→˓d/
→˓10.
→˓

→˓if
→˓d
→˓else
→˓None
>
→˓>
→˓>
→˓

→˓pf
→˓=
→˓plantframe.
→˓PlantFrame(g,
→˓

→˓TopDiameter=diam)
>
→˓>
→˓>
→˓

→˓pf.
→˓plot()

3.6. PlantFrame (3D reconstruction of plant architecture) 135

mtg Documentation, Release 2.1.2

The
di-
am-
e-
ter
is
de-
fined
for
each
ver-
tex
of
the
MTG.
To
take
into
ac-

136 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

count
the
di-
am-
e-

ter, we have to define a visitor function.

diam
→˓=
→˓g.
→˓property(
→˓'diam
→˓')

def
→˓visitor(g,
→˓

→˓v,
→˓

→˓turtle):

→˓

→˓

→˓

→˓if
→˓g.
→˓edge_
→˓type(v)
→˓==
→˓

→˓'+
→˓':

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓angle
→˓=
→˓90
→˓if
→˓g.
→˓order(v)
→˓==
→˓1
→˓else
→˓30

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓turtle.
→˓down(angle)

(continues on next page)

3.6. PlantFrame (3D reconstruction of plant architecture) 137

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓turtle.
→˓setId(v)

→˓

→˓

→˓

→˓if
→˓v
→˓in
→˓diam:

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓turtle.
→˓setWidth(diam[v]/
→˓2.
→˓)

→˓

→˓

→˓

→˓turtle.
→˓F(10)

→˓

→˓

→˓

→˓turtle.
→˓rollL()

pf
→˓=
→˓plantframe.
→˓PlantFrame(g)
pf.
→˓plot(g,
→˓

→˓visitor=visitor)

138 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

3.7 Using
MTG
within
Vi-
suAlea

Nodes
have
been
im-
ple-
mented
within
Vi-
suAlea

3.7. Using MTG within VisuAlea 139

mtg Documentation, Release 2.1.2

so
as
to
ma-
nip-
u-
late
MTG
files.
See
Ope-
nAlea
wiki
for
ex-

amples and details about VisuAlea.

The
fol-
low-
ing
dataflows
il-
lus-
trates
how
MTG
files
can
be
ma-
nip-
u-
lated
within
Vi-
suAlea.

Fig. 13: MTG manipulation within VisuAlea

140 Chapter 3. MTG User Guide

http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=packages:vplants:mtg:mtg
http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=packages:vplants:mtg:mtg
http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=packages:vplants:mtg:mtg

mtg Documentation, Release 2.1.2

3.8 File
syn-
tax

Todo: revise the entire document to check tabulation of the examples

Contents

• File syntax

– General conventions

– MTGs

* Coding strategy

* Relative names

* Coding files

· Header

· Coding section

* Examples of coding strategies in different classical situations

· Non linear growth units

· Sympodial plants

· Dominant axes

· Whorls and supra-numerary buds

· Plant growth observation

· Description of a plant from the extremities

– Dressing Files (.drf)

* Definition of basic geometric models associated with plant components

* Definition of virtual elements

* Definition of defaults parameters

* Example of dressing file

– Curve Files (.crv)

3.8.1 General
con-
ven-
tions

In
gen-

3.8. File syntax 141

mtg Documentation, Release 2.1.2

eral,
words
can
be
sep-
a-
rated
by
any
com-
bi-
na-
tion
of
whites-
pace
char-
ac-
ters
(SPACE,
TAB,
EOL).

In certain files, TABs or EOL are meaningful (e.g. MTG coding files), and therefore are not considered as a whitespace
character in these files.

Comments
may
be
in-
tro-
duced
any-
where
in
a
file
us-
ing
the
sharp
sign
#,
mean-
ing
that
the
rest
of
the

line is a comment. In some files, block comments can be introduced by bracketing the comment text with (# and #).

Files
used
by
AML

142 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

can
be
lo-
cated
any-
where
in
the
UNIX
hi-
er-
achi-
cal
file
sys-
tem,
pro-
vided
the
user

can access them. All references to files from within a file or from AML must be given explicitly. References to files
must always be made relatively to the location where the reference is made.

In
var-
i-
ous
files,
user-
defined
names
must
be
given
to
ob-
jects,
at-
tributes,
etc.
Un-
less
spec-
i-
fied
oth-
er-

wise, names always consist of strings of alphanumeric characters (including underscore ‘_’) starting by a non-numeric
character. A name may start by an underscore. Some names correspond to reserved keywords. Since reserved
keywords always start in AMAPmod with uppercase letter, it is advised, though not mandatory, to define user-defined
names starting with lowercase letter to avoid name collision.

3.8.2 MTGs

3.8. File syntax 143

mtg Documentation, Release 2.1.2

Coding strategy

A
plant
mul-
ti-
scale
topol-
ogy
is
rep-
re-
sented
by
a
string
of
char-
ac-
ters
(see
3.2.2).
The
string
is
made

up of a series of labels representing plant components (a label is made up of an alphabetic character in A-Z,a-z and a
numeric index) and of symbols representing either the physical relationships between the components. Character ‘/’ is
used for decomposition relationship (see next paragraph), ‘+’ is used for branching relationship and ‘<’ for successor
relationship. For example:

/
→˓I1
→˓<I2
→˓<I3
→˓<I4+I5
→˓<I6

is
a
string
rep-
re-
sent-
ing
6
com-
po-
nents
with
la-
bels
I1,
I2,
I3,

144 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

I4,
I5,
I6.
I1
to
I4
are

a sequence of components defining an axis which bears a second axis made up of the sequence of components I5 and
I6. In this string every component is connected with at most one subsequent component (either by a ‘<’ or by a ‘+’)

As
il-
lus-
trated
by
this
ex-
am-
ple,
the
name
of
an
en-
tity
is
built
by
con-
cate-
nat-
ing
the
con-

secutive entity labels encountered while moving along the plant structure from the plant basis to the considered entity.
For example, consider the decomposition of a plant in terms of axes. Assume this plant is made of 3 axes: axis A1
bears axis A2, which itself bears axis A3. Then, the respective names of the axes are:

/
→˓A1
/
→˓A1+A2
/
→˓A1+A2+A3

Symbol
‘+’
refers
to
the
type
of
con-
nec-
tion

3.8. File syntax 145

mtg Documentation, Release 2.1.2

be-
tween
A1
and
A2,
A2
and
A3
re-
spec-
tively.
Now,
con-
sider

another plant considered at the scale of growth units. A growth unit U90 bears a growth unit U91 which is itself
followed on the same axis by U92. The respective names of these growth units are

/
→˓U90
/
→˓U90+U91
/
→˓U90+U91
→˓<U92

These
two
ex-
am-
ples
il-
lus-
trate
how
to
de-
fine
the
name
of
plant
en-
ti-
ties
when
only
one
scale
of

description is considered. When several scales are considered, this strategy can be extended as explained in section
3.2.2.

Assume
for
in-

146 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

stance
that
axis
A1
of
the
pre-
vi-
ous
ex-
am-
ple
is
com-
posed
of
3
con-
sec-
u-
tive

growth units and that axis A2 is borne by the second growth units of A1. Then the name of A2 is defined as

/
→˓A1/
→˓U1
→˓<U2+A2

Relative names

Every
name
of
an
en-
tity
is
thus
the
con-
cate-
na-
tion
of
a
se-
ries
of
pairs
(re-
la-
tion
sym-

3.8. File syntax 147

mtg Documentation, Release 2.1.2

bol,label)
: name = relation label relation label relation label relation. . . label relation label

Let
us
con-
sider
any
pre-
fix
p
of
a
name
n
of
an
en-
tity
x
of
the
plant,
made
of
a
se-

ries of pairs (relation label). According to the recursive construction of entity names, this prefix defines the name of
an entity y on the path from the plant basis to the entity with name n. The name of x has thus the form:

n
→˓=
→˓p
→˓m

where
m
is
a
se-
ries
la-
bel
re-
la-
tion
. . .
la-
bel
re-
la-
tion.
En-
tity
x

148 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

has
ab-
so-
lute

name n. Alternatively we can say that x has relative name m with respect position p, i.e. relatively to entity y.

Examples

/
→˓S1/
→˓A1/
→˓E1+A3
→˓has
→˓relative
→˓name
→˓/
→˓A1/
→˓E1+A3
→˓in
→˓position
→˓/
→˓S1
/
→˓S1/
→˓A1/
→˓E3+A1/
→˓E4+S1/
→˓U2/
→˓E3+U1/
→˓E5+U4/
→˓E4
→˓has
→˓relative
→˓name
→˓+U1/
→˓E5+U4/
→˓E4
→˓in
→˓position
→˓/
→˓S1/
→˓A1/
→˓E3+A1/
→˓E4+S1/
→˓U2/
→˓E3

Coding files

The coding of a plant (or of a set of plants) is carried out in a so called “coding file”. The code consists of a description of the MTG representing plant architectures. A coding file contains two parts:

•
a
header
which
con-

3.8. File syntax 149

mtg Documentation, Release 2.1.2

tains
a
de-
scrip-
tion
of
the
cod-
ing
pa-
ram-
e-
ters,

•
the
code
of
the
plant
ar-
chi-
tec-
ture.

The header contains general informations related to all individuals:

•
the
set
of
all
en-
tity
classes
used
in
the
MTG
de-
scrip-
tion,

•
a
de-
tailed
de-
scrip-
tion
of
the
topo-
log-
i-

150 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

cal
prop-
er-
ties
of
these
classes,

•
and
the
set
of
all
at-
tributes
used
for
any
en-
tity
in
the
plant
de-
scrip-
tion.

In
a
MTG
cod-
ing
file,
TABs
are
mean-
ing-
ful.
They
cor-
re-
spond
to
col-
umn
sep-
a-
ra-
tors.
Con-
se-

quently, a MTG coding file should be edited using a spreadsheet editor. If a sharp ‘#’ is inserted on a line, every
character until the next TAB on the same line is considered as a comment and is not interpreted.

3.8. File syntax 151

mtg Documentation, Release 2.1.2

Header

General
pa-
ram-
e-
ter
sec-
tion

For
his-
tor-
i-
cal
rea-
sons,
two
forms
of
plant
ar-
chi-
tec-
ture
cod-
ing
have
been
de-
vel-
oped,
de-
noted

FORM-A et FORM-B. FORM-A is the most general and should be employed. FORM-B is available for ascendant
compatibility with former coding forms employed in the AMAP laboratory [Rey et al, 97]. Whatever the coding form
used the plant built by AMAPmod is the same. The form of the coding language must be specified in the coding file
by specifying either FORM-A or FORM-B following the keyword CODE, in the next column, for example : CODE:
FORM-A This definition is mandatory.

Class
def-
i-
ni-
tion
sec-
tion

Classes
must
then
be
de-
clared.
This

152 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

is
done
in
a
sec-
tion
be-
gin-
ning
with
key-
word
CLASSES.
Then
a
line
is

defined for each class of the MTG. The first column, entitled SYMBOL, contains the symbolic character denoting a
class used in the MTG. This symbol most be an alphabetic character (either upper or lower-case letter). Two classes
either at identical or different scales must have different symbolic characters. The second column, entitled SCALE,
represents the scale at which this class appears in the MTG. There are no a priori limitation related to the number of
classes, however, these must be consecutive integer greater or equal to 0. Scale i, i>1, can only appear if scale i-1 has
appeared before.

CLASSES
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
P
→˓

→˓

→˓1
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

(continues on next page)

3.8. File syntax 153

mtg Documentation, Release 2.1.2

(continued from previous page)

U
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
I
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
E
→˓

→˓

→˓3
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

Symbol
$
rep-
re-
sent
the
en-

154 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

tire
database
and
is
de-
fined
by
def-
i-
ni-
tion
at
scale
0.
Key-
word
DE-

COMPOSITION defines the types of decomposition that can have a vertex (i.e. a plant constituent) : CONNECTED,
LINEAR, <-LINEAR, +-LINEAR, FREE, NONE. Key word CONNECTED means that the decomposition graph of
a vertex at the next scale is connected. Keyword LINEAR means that the decomposition graph of a vertex at the next
scale is a linear sequence of vertices. Besides, if this all the constituents of this sequence are connected using a single
type of edge (respectively < or +), then keyword <-LINEAR et +-LINEAR can respectively be used. Keyword FREE
allows any type of decomposition structure while keyword NONE, specifies that the components of a unit must not be
decomposed. Column INDEXATION is not used. Column DEFINITION must be filled with value EXPLICIT if any
entity of that class has feature values (i.e. attributes). IMPLICIT should be used otherwise.

This
sec-
tion
is
manda-
tory.

Topological
con-
straints
sec-
tion

Topological
con-
straints
are
de-
scribed
in
the
next
sec-
tion,
be-
gin-
ning
with
key-

3.8. File syntax 155

mtg Documentation, Release 2.1.2

word
DE-
SCRIP-
TION.
Here,
each
line
de-

fines for a pair of classes at the same scale one allowed type of connection. It contains 4 columns, LEFT, RIGHT,
RELTYPE, and MAX. For any class in column LEFT, the column RIGHT defines a list of class (appearing at the
same scale) which can be connected to it using a connection of type RELTYPE. The maximum number of connections
of type RELTYPE that can be made on an entity from column is defined in column MAX. If column MAX contains
a question mark ‘?’, the number of connections is not bounded. If a class does not appear in the column LEFT, then
entities of this class cannot be connected to other entities in the MTG.

DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
U
→˓

→˓

→˓U,
→˓I
→˓+
→˓

→˓

→˓?
→˓

U
→˓

→˓

→˓U,
→˓I
→˓

→˓<
→˓

→˓

→˓1
I
→˓

→˓

→˓I
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

E
→˓

→˓

→˓E
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1

(continues on next page)

156 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

E
→˓

→˓

→˓E
→˓

→˓

→˓+
→˓

→˓

→˓1

Let
us
re-
sume
on
the
ex-
am-
ple
from
the
above
CLASS
sec-
tion
with
its
DE-
SCRIP-
TION
sec-
tion.
Since
class

P does not appear in the left column, a P cannot be connected to any other entity at scale 1, e.g. to any other P. Entities
of type U can be connected to entities of either type I or U, for any of the connection types < et +. An entity of type
U can be connected by relation + to any number of Us or Is. However, they can only be connected by relation < to at
most one entity of either type U or I. Entities of type I cannot be connected by relation < to any type of entity, while
they can be connected to other I’s by relation +. At scale 3, any E can be connected to only one other E by either
relation + or <. This section is mandatory but can contain no topology description.

Attribute
sec-
tion

The
third
and
last
part
of
the
header

3.8. File syntax 157

mtg Documentation, Release 2.1.2

con-
tains
a
list
of
names
defin-
ing
the
fea-
tures
that
can
be
at-
tached

to plant entities and their types. This part begins with keyword FEATURES. Thelist of names appears in column
NAME and the corresponding types in column TYPE. The name of an attribute might be either a reserved keyword
(see a list below) or a user-defined name. The types of attributes can be INT (integer), REAL (real number), STRING
(string of characters from {A. . . Za. . . z-+. /} and which are bounded to 14 characters max), DD/MM, DD/MM/YY,
MM/YY, DD/MM-TIME, DD/MM/YY-TIME (Dates), GEOMETRY (geometric objects defined in a .geom file),
APPEARANCE (appearance objects defined in a .app file), OBJECT (general object defined in generic type of file).

FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE

Alias
→˓

→˓

→˓STRING
Date
→˓

→˓

→˓

→˓DD/
→˓MM
NbEl
→˓

→˓

→˓

→˓INT
State
→˓

→˓

→˓STRING
flowerNb
→˓

→˓

→˓

→˓INT
len
→˓INT

(continues on next page)

158 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

TopDiameter
→˓REAL
geom
→˓

→˓

→˓

→˓GEOMETRY
→˓

→˓

→˓

→˓geom1.
→˓geom
appear
→˓

→˓APPEARANCE
→˓

→˓material.
→˓app

Certain
names
of
at-
tributes
are
re-
served
key-
words.
They
all
start
by
an
upper-
case
let-
ter.
If
they
ap-
pear
in

the feature list, they must be in the same order as in the following description. Alias, of type STRING (formerly
ALPHA), must come first if used. It allows the user to define aliases for plant entities to simplify some code
strings. Date, is used to define the observation date of an entity. NbEl (NumBer of ELements), defines the number
of components on any entity at the next scale. Length is the length of an entity. BottomDiameter et TopDiameter
respectively define the bottom and top stretching values of a tapered transformed that is applied to the geometric
symbol representing this entity (for branch segments associated with cylinder as a basic geometrc model, this defines
cone frustums). State of type STRING defines the state of an entity at the time of observation. This state can be D
(Dead), A (Alive), B (Broken) , P (Pruned), G (Growing), V (Vegetative), R (Resting), C (Completed), M (Modified).
These letters can be combined to form a string of characters, provided they consistent with one another. Such state
descriptions are checked during the parsing of the MTG and possible inconsistencies are detected.

This

3.8. File syntax 159

mtg Documentation, Release 2.1.2

sec-
tion
is
manda-
tory
but
can
con-
tain
no
fea-
tures.

Coding section

The
sec-
tion
con-
tain-
ing
the
code
of
a
MTG
starts
by
key-
word
MTG.

The
next
line
con-
tains
a
list
of
col-
umn
names.
In
the
first
col-
umn,
the
key-
word
TOPO
in-

160 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

di-
cates
that

this column and the next unlabelled column are reserved for the topological code. On the same line, all the names that
appear in the FEATURE section of the header must appear, in the same order, one column after the other, starting with
the first feature name in a column sufficiently far from the TOPO column to leave enough space for the topological
code (see examples below).

The
topo-
log-
i-
cal
code
must
nec-
es-
sar-
ily
start
by
a
‘/’
like
in:

/
→˓P1/
→˓A1.
→˓.
→˓.
→˓

It
can
spread
on
all
the
columns
be-
fore
the
first
fea-
ture
col-
umn.

Since
en-
tity
names
have
a
nested

3.8. File syntax 161

mtg Documentation, Release 2.1.2

def-
i-
ni-
tion,
a
plant
de-
scrip-
tion
can
be
made
on
a
sin-
gle
line.

However, if one wants to declare feature values attached to some entity, the plant code must be interrupted after the
label of this entity, attributes must be entered on the same line in corresponding columns, and the plant code must
continue at the next line.

Note
that
in
the
cur-
rent
im-
ple-
men-
ta-
tion
of
the
parser,
an
en-
tity
which
has
no
fea-
tures
uses
ob-

viously 0 bytes of memory for recording features, however, assuming that the total number of features is F, if an entity
has at least one feature value defined, it uses a constant space F*14 bytes to record its feature (whatever the actual
number of features defined for this entity).

Example

Here
is
an
ex-

162 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

am-
ple
of
a
cod-
ing
file
cor-
re-
spond-
ing
to
plant
il-
lus-
trated
on
Fig-
ure
4-

1:

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
P
→˓

→˓

→˓1
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

(continues on next page)

3.8. File syntax 163

mtg Documentation, Release 2.1.2

(continued from previous page)

A
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
S
→˓

→˓

→˓2
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
U
→˓

→˓

→˓3
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
A
→˓

→˓

→˓A,
→˓S
→˓+
→˓

→˓

→˓?
→˓

(continues on next page)

164 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

U
→˓

→˓

→˓U
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1
U
→˓

→˓

→˓U
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
MTG:
TOPO
/
→˓P1/
→˓A1
/
→˓P1/
→˓A1/
→˓U1
→˓<U2+S1
/
→˓P1/
→˓A1/
→˓U1
→˓<U2+S2
/
→˓P1/
→˓A1/
→˓U1
→˓<U2+A1
/
→˓P1/
→˓A1/
→˓U1
→˓<U2+A1/
→˓U1
→˓<U2+S1
/
→˓P1/
→˓A1/
→˓U1
→˓<U2
→˓<U3+S1

(continues on next page)

3.8. File syntax 165

mtg Documentation, Release 2.1.2

(continued from previous page)

/
→˓P1/
→˓A1/
→˓U1
→˓<U2
→˓<U3+A2
/
→˓P1/
→˓A1/
→˓U1
→˓<U2
→˓<U3+A2/
→˓U1
→˓<U2
→˓<U3+A3
/
→˓P1/
→˓A1/
→˓U1
→˓<U2
→˓<U3+A2/
→˓U1
→˓<U2
→˓<U3+A3/
→˓U1+S1
/
→˓P1/
→˓A1/
→˓U1
→˓<U2
→˓<U3+A2/
→˓U1
→˓<U2
→˓<U3
→˓<U4
/
→˓P1/
→˓A1/
→˓U1
→˓<U2
→˓<U3
→˓<U4

In
this
ex-
am-
ple,
cer-
tain
names
use
fre-
quently
the
same

166 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

pre-
fix
which
can
be
long
(this
bit
of
code
con-

tains 225 characters). We are going to introduce successively different strategies in order to simplify this first coding
scheme.

The
first
sim-
pli-
fi-
ca-
tion
con-
sists
of
giv-
ing
a
name
(alias)
to
an
en-
tity
name
which
is
used
fre-

quently in the name of others.

→˓#
→˓before
→˓the
→˓header
→˓is
→˓identical
→˓to
→˓the
→˓previous
→˓one
FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
(continues on next page)

3.8. File syntax 167

mtg Documentation, Release 2.1.2

(continued from previous page)

Alias
→˓

→˓

→˓ALPHA
MTG:
TOPO
→˓

→˓

→˓

→˓Alias
/
→˓P1/
→˓A1
→˓

→˓A1
(A1)/
→˓U1
→˓<U2+S1
→˓

→˓

→˓Branch1
(A1)/
→˓U1
→˓<U2+S2
(A1)/
→˓U1
→˓<U2+A1
(A1)/
→˓U1
→˓<U2+A1/
→˓U1
→˓<U2+S1
(A1)/
→˓U1
→˓<U2
→˓<U3+S1
(A1)/
→˓U1
→˓<U2
→˓<U3+A2
→˓

→˓

→˓

→˓A2
(A2)/
→˓U1
→˓<U2
→˓<U3+A3
(A2)/
→˓U1
→˓<U2
→˓<U3+A3/
→˓U1+S1
→˓

→˓Branch2
(A2)/
→˓U1
→˓<U2
→˓<U3
→˓<U4

(continues on next page)

168 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

/
→˓P1/
→˓A1/
→˓U1
→˓<U2
→˓<U3
→˓<U4

An
alias
can
be
as-
so-
ci-
ated
with
a
given
en-
tity
by
defin-
ing
its
name
in
col-
umn
Alias.
This
name

can then be reused in the topological section by enclosing it between parentheses. If an alias is used as a prefix of
an entity, the code of this entity must be given relatively to this alias. For entity A2, for instance, we can see that its
name is /U1<U2<U3+A2 relatively to position A1 which is an alias for /P1/A1. The absolute name of A2is thus,
/P1/A1/U1<U2<U3+A2. The code part of this file has now a size of 173 characters, i.e. 78% of the initial code.

The
code
of
the
MTG
can
be
fur-
ther
sim-
pli-
fied.
We
can
avoid
com-
pletely

3.8. File syntax 169

mtg Documentation, Release 2.1.2

the
rep-
e-
ti-
tion
of
bit

of codes. Assume that entity y has a code of the form XY where X represents the code of some entity x. For example
X is /P1/A1 and Y is /U1<U2<U3+A2 in the previous example. If X already appears in column of the topological
section, then we may consider that if subsequently Y appears at a different line, but shifted to the right by one column,
then Y is actually follows X which is thus its prefix. Then Y is a relative name with respect to position X. In our
example, this leads to

/
→˓P1/
→˓A1
→˓

→˓

→˓#
→˓code
→˓of
→˓x
/
→˓P1/
→˓A1/
→˓U1
→˓<U2
→˓<U3+A2
→˓

→˓

→˓#
→˓code
→˓of
→˓y

which
be-
comes

→˓#column1
→˓

→˓

→˓

→˓

→˓#column2
/
→˓P1/
→˓A1
→˓

→˓

→˓

→˓

→˓

→˓

→˓#
→˓code
→˓de
→˓x

(continues on next page)

170 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓/
→˓U1
→˓<U2
→˓<U3+A2
→˓

→˓

→˓

→˓

→˓#
→˓code
→˓de
→˓y

The
fact
that
the
code
of
y
is
shifted
one
col-
umn
to
the
right,
al-
lows
us
to
in-
ter-
pret
/U1<U2<U3+A2
as

the continuation of /P1/A1 leading to the absolute name /P1/A1/U1<U2<U3+A2 which is actually the code of y.

By
ap-
ply-
ing
this
new
rule
on
the
com-
plete

3.8. File syntax 171

mtg Documentation, Release 2.1.2

pre-
vi-
ous
ex-
am-
ple
we
ob-
tain
the
fol-
low-
ing

code

MTG:
TOPO

→˓#column1
→˓

→˓

→˓

→˓

→˓#column2
→˓

→˓

→˓

→˓

→˓#column3
→˓

→˓

→˓

→˓

→˓#column4
→˓

→˓

→˓

→˓

→˓#column5
/
→˓P1/
→˓A1

→˓

→˓

→˓

→˓/
→˓U1
→˓<U2

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+S1(continues on next page)

172 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+S2

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+A1/
→˓U1
→˓<U2+S1

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓<U3

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+A2/
→˓U1
→˓<U2
→˓<U3

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+A3/
→˓U1+S1

(continues on next page)

3.8. File syntax 173

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓<U4

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓<U4

Now
the
num-
ber
of
char-
ac-
ters
used
in
the
code
is
now
63
and
cor-
re-
sponds
to
28%
of

174 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

the
ini-

tial code. However, this compressed code raises two new problems. The first problem is that the number of columns
necessary has greatly increased. The second is that it is difficult to recognise the structural organisation of the plant in
the way the code displays it.

To
ad-
dress
both
prob-
lem,
a
new
syn-
tac-
tic
no-
ta-
tion
is
in-
tro-
duced.
Each
time
a
rel-
a-
tive

code starts with character ^ in a given cell, the current relative code must be interpreted with respect to the position
whose code is the latest code defined in the same column just above the current cell. Using the ^ notation:

MTG:
TOPO
/
→˓P1/
→˓A1
^
→˓/
→˓U1
→˓<U2

→˓

→˓

→˓

→˓+S1

→˓

→˓

→˓

→˓+S2

→˓

→˓

→˓

→˓+A1/
→˓U1
→˓<U2+S1

(continues on next page)

3.8. File syntax 175

mtg Documentation, Release 2.1.2

(continued from previous page)

^
→˓

→˓<U3

→˓

→˓

→˓

→˓+A2/
→˓U1
→˓<U2
→˓<U3

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+A3/
→˓U1+S1

→˓

→˓

→˓

→˓^
→˓

→˓<U4
^
→˓

→˓<U4

Here
the
num-
ber
of
columns
used
is
equal
to
the
num-
ber
of
or-
ders
in
the
plant
(i.e.
3),
which
bounds

176 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

the
total number of columns required and best reflects in the code the botanical structure of the plant. Entities of order i
are defined in column i which greatly improves the code leagibility. Finaly, the number of characters used is 69, i.e.
31% of the initial extended code.

In
some
cases,
a
se-
ries
of
con-
sec-
u-
tive
en-
ti-
ties
must
be
coded,
which
pro-
duces
long
lines
of
code

just as this one:

A1/
→˓U87
→˓<U88
→˓<U89
→˓<U90
→˓<U91
→˓<U92
→˓<U93+A2

Such
a
line
can
be
ab-
bre-
vi-
ated
by
us-
ing
the
<<
sign

3.8. File syntax 177

mtg Documentation, Release 2.1.2

A1/
→˓U87
→˓<
→˓<U93+A2

U87<<U93
is
a
syn-
tac-
tic
short-
hand
for
U87<U89<U90<U91<U92<U93.

Symbol
++
is
de-
fined
sim-
i-
larly:
U87++U93
is
a
short-
hand
for
U87+U89+U90+U91+U92+U93.

Note
that
in
such
cases,
the
en-
ti-
ties
im-
plic-
itly
de-
fined
can-
not
have
at-
tributes:
for
in-
stance,
the

178 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

code:

TOPO
→˓

→˓

→˓

→˓diam
→˓

→˓

→˓

→˓flowers
/
→˓A1/
→˓U87
→˓<
→˓<U93
→˓

→˓

→˓

→˓10.
→˓3
→˓

→˓

→˓

→˓2

Means
that
an
axis
A1
is
made
of
a
se-
ries
of
7
growth
units,
la-
belled
from
U87
to
U93
and
that
U93

has a diameter of 10.3 and bears 2 flowers. In some cases, we want to express that the attributes are shared by all
entities. This can be expressed as follows:

TOPO
→˓

→˓

→˓

→˓diam
→˓

→˓

→˓

→˓flowers

(continues on next page)

3.8. File syntax 179

mtg Documentation, Release 2.1.2

(continued from previous page)

/
→˓A1/
→˓U87
→˓<.
→˓

→˓<U93
→˓

→˓

→˓

→˓

→˓

→˓

→˓1

which
means
that
ev-
ery
growth
units
from
U87
to
U93
has
ex-
actly
1
flower.
No-
ta-
tion
+.+
is
de-
fined
sim-

ilarly.

Here
fol-
lows
the
com-
plete
code
of
plant
of
Fig-
ure
4-
1:

180 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
P
→˓

→˓

→˓1
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
A
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT

(continues on next page)

3.8. File syntax 181

mtg Documentation, Release 2.1.2

(continued from previous page)

S
→˓

→˓

→˓2
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
U
→˓

→˓

→˓3
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
A
→˓

→˓

→˓A,
→˓S
→˓+
→˓

→˓

→˓?
→˓

U
→˓

→˓

→˓U
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1

(continues on next page)

182 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

U
→˓

→˓

→˓U
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
MTG:
TOPO
/
→˓P1/
→˓A1
^
→˓/
→˓U1
→˓<U2

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+S1

→˓

→˓

→˓

→˓+S2

→˓

→˓

→˓

→˓+A1/
→˓U1
→˓<U2+S1
^
→˓

→˓<U3

→˓

→˓

→˓

→˓+A2/
→˓U1
→˓<
→˓<U3(continues on next page)

3.8. File syntax 183

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+A3/
→˓U1+S1

→˓

→˓

→˓

→˓

→˓<U4
^
→˓

→˓<U4

Examples of coding strategies in different classical situations

Non linear growth units

Until
now
we
have
only
used
lin-
ear
growth
units,
i.e.
en-
ti-
ties
whose
de-
com-
po-
si-
tion
in
a
lin-
ear

set of entities. It is possible to define branching growth-units, which are not a part of an axis. The plant illustrated in
Figure 4-2 illustrates such non-linear entities.

184 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
F
→˓

→˓

→˓1
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
U
→˓

→˓

→˓2
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

(continues on next page)

3.8. File syntax 185

mtg Documentation, Release 2.1.2

(continued from previous page)

DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
F
→˓

→˓

→˓F
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

F
→˓

→˓

→˓F
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1
U
→˓

→˓

→˓U
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

U
→˓

→˓

→˓U
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1
FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE

(continues on next page)

186 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

MTG:
TOPO
/
→˓F1/
→˓U1
→˓<U2

→˓

→˓

→˓

→˓+U3
→˓<U4
→˓<F2/
→˓U1

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+U2

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+U3

→˓

→˓

→˓

→˓+U5+F3/
→˓U1

Sympodial plants

Sympodial
plants
of-
ten
con-
tain
ap-
par-
ent
axes
made
up
of

3.8. File syntax 187

mtg Documentation, Release 2.1.2

se-
ries
of
mod-
ules
(or
axes).
At
a
macro-
scopic

scale, the plant is described in terms of apparent axes connected to one another (Figure 4-3) depict a typical sympodial
plant:

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
S
→˓

→˓

→˓1
→˓

→˓

→˓+-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

(continues on next page)

188 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

A
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
A
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
S
→˓

→˓

→˓S
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

A
→˓

→˓

→˓A,
→˓a
→˓+
→˓

→˓

→˓1

(continues on next page)

3.8. File syntax 189

mtg Documentation, Release 2.1.2

(continued from previous page)

A
→˓

→˓

→˓A
→˓

→˓

→˓+
→˓

→˓

→˓;
→˓1
FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
MTG:
TOPO
/
→˓S1
^
→˓/
→˓A1+A2

→˓

→˓

→˓

→˓+S1

→˓

→˓

→˓

→˓^
→˓/
→˓a1+A2+A3
^
→˓+A3

→˓

→˓

→˓

→˓+S1

→˓

→˓

→˓

→˓^
→˓/
→˓a1+A2
^
→˓+A4+A5

Note
in
this
ex-

190 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

am-
ple
the
role
of
^
which
en-
ables
us
to
pre-
serve
the
struc-
ture
of
the
plant
into

the code itself. Indeed, apparent axes appear in columns corresponding to their apparent order.

Dominant axes

Similarly,
dom-
i-
nant
axes
in
a
plant
can
be
iden-
ti-
fied
us-
ing
macro-
scopic
units
Fig-
ure
4-
4
il-
lus-

trates how to code dominant axes:

3.8. File syntax 191

mtg Documentation, Release 2.1.2

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
D
→˓

→˓

→˓1
→˓

→˓

→˓+-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
A
→˓

→˓

→˓2
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓IMPLICIT

(continues on next page)

192 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
D
→˓

→˓

→˓D
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

A
→˓

→˓

→˓A
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
MTG:
TOPO
/
→˓D1
^
→˓/
→˓A1++A7

→˓

→˓

→˓

→˓+D1/
→˓A1

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+D3/
→˓A1+A2

(continues on next page)

3.8. File syntax 193

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓^
→˓+A2++A6

→˓

→˓

→˓

→˓+D2/
→˓A1

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓+D4/
→˓A1+A2

→˓

→˓

→˓

→˓^
→˓+A2++A5

Whorls and supra-numerary buds

Whorls
and
supra-
numerary
buds
can
be
en-
coded
in
sev-
eral
ways.
One
pos-
si-
ble
so-
lu-
tion
is
to
use

194 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

the
multiscale property a a MTG as illustrated in the following example.

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
U
→˓

→˓

→˓1
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
E
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT

(continues on next page)

3.8. File syntax 195

mtg Documentation, Release 2.1.2

(continued from previous page)

V
→˓

→˓

→˓3
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
N
→˓

→˓

→˓4
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
U
→˓

→˓

→˓U
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

U
→˓

→˓

→˓U
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1

(continues on next page)

196 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

E
→˓

→˓

→˓E
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1
E
→˓

→˓

→˓E
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
MTG:
TOPO
/
→˓U90
^
→˓/
→˓E1

→˓

→˓

→˓

→˓/
→˓V1

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N1+U91

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N2+U91

(continues on next page)

3.8. File syntax 197

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓/
→˓V2

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N1+U91

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N2+U91

→˓

→˓

→˓

→˓/
→˓V3

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N1+U91
^
→˓

→˓<E2

→˓

→˓

→˓

→˓/
→˓V1

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N1+U91

(continues on next page)

198 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓/
→˓V2

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N1+U92

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N2+U92

→˓

→˓

→˓

→˓/
→˓V3

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N1+U92

→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓/
→˓N2+U92
^
→˓

→˓<E3
→˓.
→˓.
→˓.
→˓

(continues on next page)

3.8. File syntax 199

mtg Documentation, Release 2.1.2

(continued from previous page)

Entities
E
de-
note
in-
tern-
odes.
Each
in-
tern-
ode
con-
tains
a
whorl,
whose
el-
e-
ments
are
de-
noted
by
class

V. Each V can itself be decomposed into several supranumerary positions, denoted by class N. Then on each position,
a growth unit (class U) can be described. Note that within a whorl E, V positions are not connected to one another.
They are simply considered as one part of the whorl. This is also true for supra-numerary positions.

Plant growth observation

Plant
growth
can
be
ob-
served
and
de-
scribed
us-
ing
MTGs.
To
this
end,
ob-
ser-
va-
tion
dates

200 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

are
recorded.
If
some

entity is observed at several dates, the new values of its attributes at different dates are recorded on consecutive lines
where the topological code of the entity is not repeated but rather replaced by a star symbol ‘*’.

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
P
→˓

→˓

→˓1
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
U
→˓

→˓

→˓2
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

(continues on next page)

3.8. File syntax 201

mtg Documentation, Release 2.1.2

(continued from previous page)

DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
U
→˓

→˓

→˓U
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1
U
→˓

→˓

→˓U
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
Date
→˓

→˓

→˓

→˓DD/
→˓MM/
→˓YY
MTG:
TOPO
→˓

→˓

→˓

→˓Date
/
→˓P1
^
→˓/
→˓U1
→˓<U2
→˓

→˓

→˓

→˓

→˓08/
→˓06/
→˓00

(continues on next page)

202 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

*
→˓

→˓

→˓19/
→˓06/
→˓00

*
→˓

→˓

→˓30/
→˓06/
→˓00

*
→˓

→˓

→˓10/
→˓07/
→˓00

→˓

→˓

→˓

→˓+U1
→˓<U2
→˓

→˓19/
→˓06/
→˓00

→˓

→˓

→˓

→˓*
→˓

→˓

→˓30/
→˓06/
→˓00

→˓

→˓

→˓

→˓*
→˓

→˓

→˓10/
→˓07/
→˓00
^
→˓

→˓<U3
→˓

→˓

→˓

→˓19/
→˓06/
→˓00

(continues on next page)

3.8. File syntax 203

mtg Documentation, Release 2.1.2

(continued from previous page)

*
→˓

→˓

→˓30/
→˓06/
→˓00

→˓

→˓

→˓

→˓+U1
→˓<
→˓<U3
→˓

→˓

→˓

→˓

→˓19/
→˓06/
→˓00

→˓

→˓

→˓

→˓*
→˓

→˓

→˓

→˓

→˓

→˓

→˓30/
→˓06/
→˓00

→˓

→˓

→˓

→˓*
→˓

→˓

→˓

→˓

→˓

→˓

→˓10/
→˓07/
→˓00

→˓

→˓

→˓

→˓

→˓<U4
→˓

→˓

→˓

→˓

→˓30/
→˓06/
→˓00

(continues on next page)

204 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓*
→˓

→˓

→˓

→˓

→˓

→˓

→˓10/
→˓07/
→˓00

Branching
units
lo-
cated
on
the
bearer
ac-
cord-
ing
their
height
from
the
ba-
sis

In
some
cases,
it
is
use-
ful
to
use
the
in-
dex
of
an
en-
tity
la-
bel
to
record
in-
for-

3.8. File syntax 205

mtg Documentation, Release 2.1.2

ma-
tion.

Here, the index of the entity is used to denote the position of an element is used to record the height of this position
with respect to the basis of the corresponding axis.

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
X
→˓

→˓

→˓1
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
L
→˓

→˓

→˓2
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

(continues on next page)

206 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
X
→˓

→˓

→˓X
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
MTG:
TOPO
→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓Alias
/
→˓X90

→˓

→˓

→˓

→˓/
→˓L50+X91

→˓

→˓

→˓

→˓/
→˓L100+X91
→˓

→˓

→˓A91

→˓

→˓

→˓

→˓/
→˓L123+X92

(continues on next page)

3.8. File syntax 207

mtg Documentation, Release 2.1.2

(continued from previous page)

(A91)
→˓

→˓

→˓

→˓

→˓

→˓

→˓

→˓#
→˓Back
→˓to
→˓axis
→˓borne
→˓at
→˓position
→˓L100

→˓

→˓

→˓

→˓/
→˓L10+X92

→˓

→˓

→˓

→˓/
→˓L25+X92

→˓

→˓

→˓

→˓.
→˓.
→˓.
→˓

Description of a plant from the extremities

On
some
plants,
it
is
eas-
ier
to
de-
scribed
branches
start-
ing
from
the

208 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

bud
of
the
stem
on
pro-
ceed-
ing
down-

ward to the stem basis. This is the case for instance, for large trees where biological markers of growth, nodes, growth
unit limits, sympodial module, etc., are more leagible near the branch extremities. Here follows a strategy to code the
plant in such a case.

CODE:
→˓

→˓

→˓FORM-
→˓A
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
P
→˓

→˓

→˓1
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

(continues on next page)

3.8. File syntax 209

mtg Documentation, Release 2.1.2

(continued from previous page)

U
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
E
→˓

→˓

→˓3
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
U
→˓

→˓

→˓U
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

U
→˓

→˓

→˓U
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1

(continues on next page)

210 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

E
→˓

→˓

→˓E
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1
E
→˓

→˓

→˓E
→˓

→˓

→˓+
→˓

→˓

→˓1
FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
MTG:
TOPO
/
→˓P1
^
→˓/
→˓U86

→˓

→˓

→˓

→˓/
→˓E2+U87
^
→˓

→˓<U87
^
→˓

→˓<U88
^
→˓

→˓<U89

→˓

→˓

→˓

→˓/
→˓E10+U89

→˓

→˓

→˓

→˓/
→˓E4+U90

(continues on next page)

3.8. File syntax 211

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓/
→˓E3+U90

→˓

→˓

→˓

→˓/
→˓E1+U90
^
→˓

→˓<U90

→˓

→˓

→˓

→˓/
→˓E6+U90

→˓

→˓

→˓

→˓/
→˓E3+U90

→˓

→˓

→˓

→˓/
→˓E2+U91

→˓

→˓

→˓

→˓/
→˓E1+U91
^
→˓

→˓<U91

→˓

→˓

→˓

→˓/
→˓E7+U91
→˓

→˓#
→˓7th
→˓internode
→˓from
→˓the
→˓apex
→˓U91

→˓

→˓

→˓

→˓/
→˓E3+U92
→˓

→˓#
→˓3th
→˓internode
→˓from
→˓the
→˓apex
→˓U91

(continues on next page)

212 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓/
→˓E2+U92
→˓

→˓#
→˓2nd
→˓internode
→˓from
→˓the
→˓apex
→˓U91

The
en-
ti-
ties
of
the
stem
must
be
or-
dered
in
the
file
bottom-
up
(cf.
the
firt
col-
umn
where
growth
units

U have increasing indexes). However, the positions within a given growth unit is given from top down to the basis
of this growth unit. In addition, if the user wants to enter the stem entities (here growth units) from the top down to
the basis of the stem, (s)he can use a laptop computer and insert new growth units (say U90) before the ones already
observed at the top (say U91).

A
sec-
ond
so-
lu-
tion
con-
sists
of
us-

3.8. File syntax 213

mtg Documentation, Release 2.1.2

ing
a
FORM-
B
code.
Us-
ing
this
more
spe-
cific
code
al-
lows

you to enter the entities of the stem from top to basis (see first column).

CODE:
→˓

→˓

→˓FORM-
→˓B
CLASSES:
SYMBOL
→˓

→˓SCALE
→˓

→˓

→˓DECOMPOSITION
→˓

→˓

→˓INDEXATION
→˓

→˓DEFINITION

→˓$
→˓

→˓

→˓0
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT
P
→˓

→˓

→˓1
→˓

→˓

→˓CONNECTED
→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓IMPLICIT

(continues on next page)

214 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

U
→˓

→˓

→˓2
→˓

→˓

→˓

→˓<-
→˓LINEAR
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
E
→˓

→˓

→˓3
→˓

→˓

→˓NONE
→˓

→˓

→˓

→˓FREE
→˓

→˓

→˓

→˓EXPLICIT
DESCRIPTION:
LEFT
→˓

→˓

→˓

→˓RIGHT
→˓

→˓

→˓RELTYPE
→˓MAX
U
→˓

→˓

→˓U
→˓

→˓

→˓+
→˓

→˓

→˓?
→˓

U
→˓

→˓

→˓U
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1

(continues on next page)

3.8. File syntax 215

mtg Documentation, Release 2.1.2

(continued from previous page)

E
→˓

→˓

→˓E
→˓

→˓

→˓

→˓<
→˓

→˓

→˓1
E
→˓

→˓

→˓E
→˓

→˓

→˓+
→˓

→˓

→˓1
FEATURES:
NAME
→˓

→˓

→˓

→˓TYPE
MTG:
TOPO
/
→˓P1
^
→˓/
→˓U91

→˓

→˓

→˓

→˓/
→˓E2+U92
→˓

→˓#
→˓2nd
→˓internode
→˓from
→˓the
→˓apex
→˓U91

→˓

→˓

→˓

→˓/
→˓E3+U92
→˓

→˓#
→˓3rd
→˓internode
→˓from
→˓the
→˓apex
→˓U91

(continues on next page)

216 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓/
→˓E7+U91
→˓

→˓#
→˓7th
→˓internode
→˓from
→˓the
→˓apex
→˓U91
^
→˓/
→˓U90

→˓

→˓

→˓

→˓/
→˓E1+U91

→˓

→˓

→˓

→˓/
→˓E2+U91

→˓

→˓

→˓

→˓/
→˓E3+U90

→˓

→˓

→˓

→˓/
→˓E6+U90
^
→˓

→˓<U89

→˓

→˓

→˓

→˓/
→˓E1+U90

→˓

→˓

→˓

→˓/
→˓E3+U90

→˓

→˓

→˓

→˓/
→˓E4+U90

(continues on next page)

3.8. File syntax 217

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓

→˓

→˓

→˓/
→˓E10+U89
^
→˓

→˓<U88
^
→˓

→˓<U87

→˓

→˓

→˓

→˓/
→˓E7+U87

Reference
Man-
ual
-

STAT
mod-
ule
4.2
Dress-
ing
files

3.8.3 Dressing
Files
(.drf)

The
dress-
ing
data
are
the
de-
fault
data
that
are
used
to
de-
fine
the
ge-

218 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

o-
met-
ric
mod-
els
as-
so-

ciated with geometric entities and to compute their geometric parameters when inference algorithms cannot be applied.
These data are basically constant values (see the table below) and may be redefined in the dressing file. If no dressing
file is defined, default (hard-coded) values are used (see table below). The dressing file .drf , if it exists in the current
directory, is always used as a default dressing file.

The
dress-
ing
data
en-
tries
can
be
sub-
di-
vided
into
3
cat-
e-
gories
(any
of
these
cat-
e-
gories
can
be

omitted).

Definition of basic geometric models associated with plant components

A
graphic
model
can
be
as-
so-
ci-
ated
with
a
com-
po-
nent

3.8. File syntax 219

mtg Documentation, Release 2.1.2

in
the
fol-
low-
ing
way
(all
key-
words
are

in boldface characters):

1.
First,
a
set
of
all
the
ba-
sic
ge-
o-
met-
ric
mod-
els
of
in-
ter-
est
must
be
de-
fined.
This

is done by specifying a file containing the geometric description of these models (for a definition of the syntax of
geometric models, refer to the annexe section):

Geometry
→˓=
→˓file1.
→˓geom
Geometry
→˓=
→˓.
→˓.
→˓/
→˓.
→˓.
→˓/
→˓file2.
→˓geom

The
ef-

220 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

fect
of
these
lines
is
to
load
the
ge-
o-
met-
ric
mod-
els
that
are
de-
fined
in
files
file1.geom
and

in file ../../file2.geom. Each geometric model defined is these files is associated with a symbolic name. If the same
symbolic name is found twice during the loading operation, an error is generated and should be corrected.

2.
Any
sym-
bolic
name
(like
in-
tern-
ode)
can
then
be
as-
so-
ci-
ated
with
a
com-
po-
nent
us-
ing
the

class of the component as follows:

Class
→˓I
→˓=
→˓internode(continues on next page)

3.8. File syntax 221

mtg Documentation, Release 2.1.2

(continued from previous page)

where
I
cor-
re-
sponds
to
a
class
name.
This
means
that
all
the
ver-
tices
of
class
I
will
have
a
ge-
om-

etry defined by the geometric model internode. Note that class I does not necessarily correspond to a valid class of a
MTG (however, it should be a alphabetic letter in a-z,A-Z).

Alternatively,
to
al-
low
for
as-
cen-
dant
com-
pat-
i-
bil-
ity
with
pre-
vi-
ous
ver-
sions
of
AMAP-
mod,
it
is

possible to directly refer to geometric models defined in .smb files. In this case, the set of geometric models corre-

222 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

sponds to the files contained in directory SMBPath and a geometric model can be loaded in AMAPmod by identifying
a smb file in this directiry. This is done as follows in the dressing file:

SMBPath
→˓=
→˓.
→˓.
→˓/
→˓.
→˓.
→˓/
→˓databases/
→˓SMBFiles
SMBModel
→˓internode2
→˓=
→˓nentn105
SMBModel
→˓leaf3
→˓=
→˓oakleaf

Here,
ge-
o-
met-
ric
mod-
els
in-
tern-
ode2
and
are
re-
spec-
tively
as-
so-
ci-
ated
with
poly-
gon
files
nentn105.smb

and oakleaf.smb which are both located in directory ../../databases/SMBFiles.

Like
ex-
posed
above,
SMB
ge-
o-
met-

3.8. File syntax 223

mtg Documentation, Release 2.1.2

ric
mod-
els
can
then
be
as-
so-
ci-
ated
with
ver-
tex
classes:

Class
→˓J
→˓=
→˓internode2
Class
→˓F
→˓=
→˓leaf3

Then,
global
shapes
can
be
de-
fined
for
branches.
This
is
done
us-
ing
the
fea-
ture
“cat-
e-
gory”
de-
fined
for
branches.

The category of a branch is defined by the category of its first component. Note that the category may depend on the
scale at which a branch is considered. For each category, the user can associate a 3 dimensional shape as a 3D bezier
curve. The shape of the branch is then fit to the general shape associated with its category.

Assuming
a
set

224 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

of
Bezier
curves
are
spec-
i-
fied
in
a
file
bezier-
shapes.crv
(for
ex-
am-
ple),
we
can
as-
so-
ciate

branch categories with the Bezier curves using the following notation:

BranchPattern
→˓=
→˓.
→˓.
→˓/
→˓Curves/
→˓beziershapes.
→˓crv
Form
→˓category
→˓=
→˓curve2

Note
that
the
file
bezier-
shapes.crv
is
in-
cluded,
us-
ing
a
path
rel-
a-
tive
to
the
di-

3.8. File syntax 225

mtg Documentation, Release 2.1.2

rec-
tory
where
the
.drf

file itself is located. Alternatively, an absolute filename could be given. The structure of the file beziershapes.crv is
discribed in section 4.4.

Definition of virtual elements

Components
that
don’t
ap-
pear
in
an
MTG
de-
scrip-
tion
can
be
added
to
a
MTG
(e.g.
leaves,
flow-
ers
or
fruits).
It

is possible to define these new symbols as follows:

Geometry
→˓=
→˓file1.
→˓geom

SMBPath
→˓=
→˓SMBFiles
SMBModel
→˓leaf
→˓=
→˓feui113

Class
→˓L
→˓=
→˓leaf
Class
→˓A
→˓=
→˓apple

(continues on next page)

226 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

Class
→˓B
→˓=
→˓apricot_
→˓flower

LeafClass
→˓=
→˓L
FlowerClass
→˓=
→˓B
FruitClass
→˓=
→˓A

A
sym-
bol
L
(a
char-
ac-
ter)
is
de-
fined
and
is
as-
so-
ci-
ated
with
ge-
o-
met-
ric
model
leaf.

The two last lines associate respectively virtual leaf and fruit components with the geometric model associated with
classes L and A.

Definition of defaults parameters

The
value
of
de-
fault
pa-
ram-
e-

3.8. File syntax 227

mtg Documentation, Release 2.1.2

ters
used
to
com-
pute
ge-
o-
met-
ric
mod-
els
can
be
changed
in
the

dressing file. Here follows the complete list of these parameters illustrated on an example:

→˓#
→˓Default
→˓geometric
→˓units
→˓(these
→˓quantities
→˓are
→˓used

→˓#
→˓to
→˓divide
→˓every
→˓value
→˓of
→˓the
→˓corresponding
→˓type
→˓before
→˓use)

LengthUnit
→˓=
→˓10
DiameterUnit
→˓=
→˓100
AlphaUnit
→˓=
→˓1

DefaultAlpha
→˓=
→˓30
DefaultTeta
→˓=
→˓0
DefaultPhi
→˓=
→˓90

(continues on next page)

228 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

DefaultPsi
→˓=
→˓180

DefaultCategory
→˓=
→˓3
DefaultTrunkCategory
→˓=
→˓0

Alpha
→˓=
→˓Relative
Phyllotaxy
→˓=
→˓2/
→˓5

DefaultEdge
→˓=
→˓PLUS
→˓

→˓#
→˓used
→˓for
→˓plantframe
→˓construction

→˓#
→˓Redefinition
→˓of
→˓default
→˓values
→˓of
→˓the
→˓geometric
→˓models
→˓of

→˓#
→˓components
→˓(here
→˓component
→˓S)

MinLength
→˓S
→˓=
→˓1000
MinTopDiameter
→˓S
→˓=
→˓20
MinBottomDiameter
→˓S
→˓=
→˓20

(continues on next page)

3.8. File syntax 229

mtg Documentation, Release 2.1.2

(continued from previous page)

→˓#
→˓Redefinition
→˓of
→˓default
→˓values
→˓of
→˓the
→˓geometric
→˓models
→˓of

→˓#
→˓virtual
→˓components

LeafLength
→˓=
→˓1
LeafTopDiameter
→˓=
→˓2
LeafBottomDiameter
→˓=
→˓2
LeafAlpha
→˓=
→˓0
LeafBeta
→˓=
→˓0

FruitLength
→˓=
→˓1
FruitTopDiameter
→˓=
→˓1
FruitBottomDiameter
→˓=
→˓1
FruitAlpha
→˓=
→˓0
FruitBeta
→˓=
→˓0

FlowerLength
→˓=
→˓10
FlowerTopDiameter
→˓=
→˓5
FlowerBottomDiameter
→˓=
→˓5(continues on next page)

230 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

FlowerAlpha
→˓=
→˓180
FlowerBeta
→˓=
→˓0

DefaultTrunkCategory
→˓=
→˓0
DefaultDistance
→˓=
→˓1000
NbPlantsPerLine
→˓=
→˓6

→˓#
→˓Colors
→˓for
→˓interpolation

MediumThresholdGreen
→˓=
→˓1
MediumThresholdRed
→˓=
→˓0
MediumThresholdBlue
→˓=
→˓0
MinThresholdGreen
→˓=
→˓0
MinThresholdRed
→˓=
→˓0
MinThresholdBlue
→˓=
→˓1
MaxThresholdGreen
→˓=
→˓0
MaxThresholdRed
→˓=
→˓1
MaxThresholdBlue
→˓=
→˓0

Any
of
these
key-
words
can

3.8. File syntax 231

mtg Documentation, Release 2.1.2

be
omit-
ted
in
the
dress-
ing
file.
If
omit-
ted,
a
pa-
ram-
e-
ter
takes
a

default value, hard-coded into AMAPmod. The default values are defined in the following table: i

Name of the parameter Description Default value Values
SMBPath Plant where SMB files are recorded . STRING
LengthUnit Unit used to divide all the length data 1 INT
AlphaUnit Unit used to divide all the insertion angle 180/PI INT
AzimutUnit Unit used to divide all the angles 180/PI INT
DiametersUnit Unit used to divide all the diameters 1 INT
DefaultEdge Type of edge used to reconstruct a connected MTG NONE PLUS or LESS
DefaultAlpha Default insertion angle (value in degrees with respect to the horizontal plane). 30 REAL
Phillotaxy Phyllotaxic angle (given in degrees) or in number of turns over number of leaves for this number of turns. 180 REAL or ratio e.g. 2/3
Alpha Nature of the insertion angle. Absolute Absolute or Relative
DefaultTeta Default first Euler angle 0 REAL
DefaultPhi Default second Euler angle 0 REAL
DefaultPsi Default third Euler angle 0 REAL
MinLength S Default length for elements whose class is S. 100 INT
MinTopDiameter S Default top diameter for elements whose class is S. 10 INT
MinBotDiameter S Default bottom diameter for elements whose class is S. 10 INT
DefaultTrunkCategory Default category for elements of the plant trunk. The default category of the other axes is their (botanical) order starting at 0 on the trunk. -1 INT
DefaultDistance Distance between the trunk of two plants when several plants are vizualized at a time 100 REAL
NbPlantsPerLine Number of plants per line when several plants are vizualized at a time 10 INT
MediumThresholdGreen Green component of the color used for the values equal to the MediumThreshold (see command Plot on a PLANTFRAME) in the case of a color interpolation. 0.05 REAL
MediumThresholdRed Idem for the red component. 0.07 REAL
MediumThresholdBlue Idem for the blue component. 0.01 REAL
MinThresholdGreen Green component of the color used for the values equal to the MinThreshold (see command Plot on a PLANTFRAME) in the case of a color interpolation. 1 REAL
MinThresholdRed Idem for the red component. 0 REAL
MinThresholdBlue Idem for the blue component. 0 REAL
MaxThresholdGreen Green component of the color used for the values equal to the MaxThreshold (see command Plot on a PLANTFRAME) in the case of a color interpolation. 0 REAL
MaxThresholdRed Idem for the red component 1 REAL
MaxThresholdBlue Idem for the blue component. 1 REAL
Whorl Number of virtual symbols per node 2 INT
LeafClass Class used for a leaf L CHAR
LeafLength Length of the leaf 50 REAL
LeafTopDiameter Top diameter of the leaf 5 REAL

Continued on next page

232 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

Table 1 – continued from previous page
Name of the parameter Description Default value Values
LeafBottomDiameter Bottom diameter of the leaf 5 REAL
LeafAlpha Insertion angle of a leaf 30 REAL
LeafBeta Azimuthal angle of a leaf (w.r.t its carrier) 180 REAL
FruitClass Class used for a fruit F CHAR
FruitLength Length of the fruit 50 REAL
FruitTopDiamter Top diameter of the fruit 5 REAL
FruitBottomDiameter Bottom diameter of the fruit 5 REAL
FruitAlpha Insertion angle of a fruit 30 REAL
FruitBeta Azimuthal angle of a fruit (w.r.t its carrier) 180 REAL
FlowerClass Class used for a flower W CHAR
FlowerLength Length of the flower 50 REAL
FlowerTopDiameter Top diameter of the flower 5 REAL
FlowerBottomDiameter Bottom diameter of the flower 5 REAL
FlowerAlpha Insertion angle of a flower 30 REAL
FlowerBeta Azimuthal angle of a flower (w.r.t its carrier) 180 REAL

Example of dressing file

see
aml
ex-
am-
ple

3.8.4 Curve
Files
(.crv)

A
curve
file
con-
tains
the
spec-
i-
fi-
ca-
tion
of
Bezier
curves.
It
has
the
fol-
low-
ing
gen-

3.8. File syntax 233

mtg Documentation, Release 2.1.2

eral
struc-
ture:

𝑛
curve1
𝑘1
𝑥1 𝑦1 𝑧1
. . .
𝑥𝑘1𝑦𝑘1𝑧𝑘1
curve2
𝑘2
𝑥1𝑦1𝑧1
. . .
𝑥𝑘2𝑦𝑘2𝑧𝑘2
. . .
cur-
ven
𝑘𝑛
𝑥1𝑦1𝑧1
. . .
𝑥𝑘𝑛𝑦𝑘𝑛𝑧𝑘𝑛

where
n,
k1,
kn,
are
in-
te-
gers
and
curve1,
curve2,
. . . ,
cur-
ven
are
strings
of
char-
ac-
ters.
All
co-
or-
di-

nates are real numbers.

documentation
sta-
tus::
in

234 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

progress

Documentation
adapted
from
the
AMAP-
mod
user
man-
ual
ver-
sion
1.8.

3.9 Lsystem
and
MTGs

Author
Thomas
Coke-
laer
<Thomas.Cokelaer@sophia.inria.fr>

Contents

• Lsystem and MTGs

– General usage

– Extract information from the lsystem

* axiom

* context

* last iteration

– Activate the lsystem with makecurrent

– Executing the lsystem

* animate

* iterate

– Transform the lstring/axialtree into MTG and vice-versa

* lpy2mtg method

* axialtree2mtg method

* mtg2lpy and lpy2mtg method

3.9. Lsystem and MTGs 235

mailto:Thomas.Cokelaer@sophia.inria.fr

mtg Documentation, Release 2.1.2

Let
us
start
from
the
fol-
low-
ing
L-
system

angle
→˓=
→˓20

context().
→˓turtle.
→˓setAngleIncrement(angle)

Axiom:
→˓X

def
→˓EndEach(lstring):

→˓

→˓

→˓

→˓print
→˓lstring

derivation
→˓length:
→˓7
production:
X
→˓-
→˓-
→˓>
→˓

→˓F[+X]F[-
→˓X]+X
F
→˓-
→˓-
→˓>
→˓

→˓FF

homomorphism:

F
→˓-
→˓-
→˓>
→˓

→˓SetWidth(0.
→˓5)
→˓F

(continues on next page)

236 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

endlsystem

3.9.1 General
us-
age

First,
im-
port
some
mod-
ules

import
→˓openalea.
→˓lpy
→˓as
→˓lpy
from
→˓PyQt4.
→˓QtCore
→˓import
→˓*
from
→˓PyQt4.
→˓QtGui
→˓import
→˓*
import
→˓time
from
→˓openalea.
→˓plantgl.
→˓all
→˓import
→˓*
from
→˓openalea.
→˓mtg.
→˓io
→˓import
→˓lpy2mtg,
→˓

→˓mtg2lpy,
→˓

→˓axialtree2mtg,
→˓

→˓mtg2axialtree
from
→˓openalea.
→˓mtg.
→˓aml
→˓import
→˓*(continues on next page)

3.9. Lsystem and MTGs 237

mtg Documentation, Release 2.1.2

(continued from previous page)

and
then,
read
the
lsys-
tem:

>
→˓>
→˓>
→˓

→˓l
→˓=
→˓lpy.
→˓Lsystem(
→˓'example.
→˓lpy
→˓')

execute
it:

>
→˓>
→˓>
→˓

→˓tree
→˓=
→˓l.
→˓iterate()
F[+X]F[-
→˓X]+X.
→˓.
→˓.
→˓

and
plot
the
re-
sults:

>
→˓>
→˓>
→˓

→˓l.
→˓plot(tree)

that
you
can
save
into

238 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

a
PNG
file
as
fol-
lows:

>
→˓>
→˓>
→˓

→˓Viewer.
→˓frameGL.
→˓saveImage(
→˓'output.
→˓png
→˓',
→˓

→˓

→˓'png
→˓')

3.9.2 Extract
in-
for-
ma-
tion
from
the
lsys-
tem

axiom

Get
the
ax-
iom

3.9. Lsystem and MTGs 239

mtg Documentation, Release 2.1.2

into
an
ax-
i-
al-
tree
ob-
ject:

l.
→˓axiom

context

context
gets
the
pro-
duc-
tion
rules,
group,
it-
er-
a-
tion
num-
ber

>
→˓>
→˓>
→˓

→˓context
→˓=
→˓l.
→˓context()
>
→˓>
→˓>
→˓

→˓context.
→˓getGroup()
0
>
→˓>
→˓>
→˓

→˓context.
→˓getIterationNb()
6

240 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

last iteration

If
the
Lsys-
tem
fin-
ished
nor-
nally,
the
last
it-
er-
a-
tion
must
be
equal
to
the
deriva-
tion
length.

>
→˓>
→˓>
→˓

→˓l.
→˓getLastIterationNb()
6
>
→˓>
→˓>
→˓

→˓l.
→˓derivationLength
7

3.9.3 Activate
the
lsys-
tem
with
make-
cur-
rent

Todo: what is this for ?

3.9. Lsystem and MTGs 241

mtg Documentation, Release 2.1.2

l.
→˓makeCurrent()

3.9.4 Executing
the
lsys-
tem

animate

In
or-
der
to
run
the
lsys-
tem
step
by
step
with
a
plot
re-
fresh-
ing
at
each
step,
use
an-
i-
mate(),

for which you may provide a minimal time step between each iteration.

l.
→˓animate(step)

where
step
is
in
sec-
onds.
Note
that
you
may
still
set
the

242 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

an-
i-
ma-
tion
to
false
us-
ing:

Viewer.
→˓animation(False)

iterate

Run
all
steps
un-
til
the
end:

>
→˓>
→˓>
→˓

→˓l.
→˓iterate()

or
step
by
step:

>
→˓>
→˓>
→˓

→˓l.
→˓iterate(1)
F[+X]F[-
→˓X]+X
AxialTree(F[+X]F[-
→˓X]+X)
>
→˓>
→˓>
→˓

→˓tree
→˓=
→˓l.
→˓iterate(1)
F[+X]F[-
→˓X]+X
>
→˓>
→˓>
→˓

→˓l.
→˓iterate(1,
→˓

→˓1,
→˓

→˓tree)
→˓==
→˓l.
→˓iterate(2)

(continues on next page)

3.9. Lsystem and MTGs 243

mtg Documentation, Release 2.1.2

(continued from previous page)

FF[+F[+X]F[-
→˓X]+X]FF[-
→˓F[+X]F[-
→˓X]+X]+F[+X]F[-
→˓X]+X
F[+X]F[-
→˓X]+X
FF[+F[+X]F[-
→˓X]+X]FF[-
→˓F[+X]F[-
→˓X]+X]+F[+X]F[-
→˓X]+X
True

Note: When using iterate() with 1 argument, the Lsystem is run from the beginning again. To keep track of a previous
run, 3 arguments are required. In such case, the first is used only to keep track of the number of iteration, that is stored
in l.getLastIterationNb(), the second argument is then the number of iteration required and the 3d argument is the
axiom (i.e., the previous AxialTree output).

3.9.5 Transform
the
lstring/axialtree
into
MTG
and
vice-
versa

>
→˓>
→˓>
→˓

→˓axialtree
→˓=
→˓l.
→˓iterate()

lpy2mtg method

axialtree2mtg method

>
→˓>
→˓>
→˓

→˓axialtree
→˓=
→˓l.
→˓iterate()

(continues on next page)

244 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

(continued from previous page)

F[+X]F[-
→˓X]+X.
→˓.
→˓.
→˓

>
→˓>
→˓>
→˓

→˓scales
→˓=
→˓

→˓{
→˓'F
→˓':1,
→˓

→˓'X
→˓':1}
→˓

>
→˓>
→˓>
→˓

→˓mtg1
→˓=
→˓axialtree2mtg(axialtree,
→˓

→˓scales,
→˓

→˓l.
→˓sceneInterpretation(axialtree),
→˓

→˓None)

and
come
back
to
the
orig-
i-
nal
one:

>
→˓>
→˓>
→˓

→˓tree1
→˓=
→˓mtg2axialtree(mtg1,
→˓

→˓scales,
→˓

→˓None,
→˓

→˓axialtree)(continues on next page)

3.9. Lsystem and MTGs 245

mtg Documentation, Release 2.1.2

(continued from previous page)

>
→˓>
→˓>
→˓

→˓assert
→˓str(axialtree)==str(tree1)
True

mtg2lpy and lpy2mtg method

>
→˓>
→˓>
→˓

→˓mtg2
→˓=
→˓lpy2mtg(axialtree,
→˓

→˓l)
>
→˓>
→˓>
→˓

→˓tree2
→˓=
→˓lpy2mtg(mtg2,
→˓

→˓l,
→˓

→˓axialtree)
>
→˓>
→˓>
→˓

→˓assert
→˓str(axialtree)==str(tree2)
True

>
→˓>
→˓>
→˓

→˓scene
→˓=
→˓l.
→˓sceneInterpretation(axialtree)

if
no
lsys-
tem
is
avail-
abe,
you

246 Chapter 3. MTG User Guide

mtg Documentation, Release 2.1.2

may
use
gen-
er-
ateScene(axialtree)
us-
ing
from
ope-
nalea.lpy
im-
port
gen-
er-
ateScene

3.10 Bibliography

3.11 Classes
and
In-
ter-
faces

Each
data
struc-
ture
im-
ple-
ment
a
set
of
spe-
cific
in-
ter-
face.
These
in-
ter-
faces
de-
fine
the
name
of

the methods, their semantic, and sometime their complexity.

3.10. Bibliography 247

mtg Documentation, Release 2.1.2

See
openalea.
mtg.
mtg

3.12 Algorithms

The
openalea.
mtg.
mtg
pack-
age
pro-
vides
data
struc-
ture
as
well
as
al-
go-
rithms.
This
sec-
tion
in-
tro-
duces
the

reader to the main algorithms and shows simple examples.

248 Chapter 3. MTG User Guide

CHAPTER 4

Reference

4.1 MTG - Multi-scale Tree Graph

4.1.1 Overview

openalea.mtg.mtg.MTG(filename=”, has_date=False)
A Multiscale Tree Graph (MTG) class.

MTGs describe tree structures at different levels of details, named scales. For example, a botanist can described
plants at different scales :

• at scale 0, the whole scene.

• at scale 1, the individual plants.

• at scale 2, the axes of each plants.

• at scale 3, the growth units of each axis, and so on.

Each scale can have a label, e.g. :

• scale 1 : P(lant)

• scale 2 : A(xis)

• sclae 3 : U(nit of growth)

Compared to a classical tree, complex() can be seen as parent() and components() as children().
An element at scale()N belongs to a complex() at scale()N-1 and has components() at scale N+1:

• /P/A/U (decomposition is noted using “/”)

Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:

• /P1/P2/P3

• A1+A2<A3

• . . .

249

mtg Documentation, Release 2.1.2

4.1.2 Iterating over vertices

MTG.root Return the tree root.
MTG.vertices([scale]) Return a list of the vertices contained in an MTG.
MTG.nb_vertices([scale]) Returns the number of vertices.
MTG.parent(vtx_id) Return the parent of vtx_id.
MTG.children(vtx_id) returns a vertex iterator
MTG.nb_children(vtx_id) returns the number of children
MTG.siblings(vtx_id) returns an iterator of vtx_id siblings.
MTG.nb_siblings(vtx_id) returns the number of siblings
MTG.roots([scale]) Returns a list of the roots of the tree graphs at a given

scale.
MTG.complex(vtx_id) Returns the complex of vtx_id.
MTG.components(vid) returns the components of a vertex
MTG.nb_components(vid) returns the number of components
MTG.complex_at_scale(vtx_id, scale) Returns the complex of vtx_id at scale scale.
MTG.components_at_scale(vid, scale) returns a vertex iterator

4.1.3 Adding and removing vertices

MTG.__init__([filename, has_date]) Create a new MTG object.
MTG.add_child(parent[, child]) Add a child to a parent.
MTG.insert_parent(vtx_id[, parent_id]) Insert parent_id between vtx_id and its actual parent.
MTG.insert_sibling(vtx_id1[, vtx_id2]) Insert a sibling of vtk_id1.
MTG.add_component(complex_id[, compo-
nent_id])

Add a component at the end of the components

MTG.add_child_and_complex(parent[, child,
. . .])

Add a child at the end of children that belong to an other
complex.

MTG.add_child_tree(parent, tree) Add a tree after the children of the parent vertex.
MTG.clear() Remove all vertices and edges from the MTG.

4.1.4 Some usefull functions

simple_tree(tree, vtx_id[, nb_children, . . .]) Generate and add a regular tree to an existing one at a
given vertex.

random_tree(mtg, root[, nb_children, . . .]) Generate and add a random tree to an existing one.
random_mtg(tree, nb_scales) Convert a tree into an MTG of nb_scales.
colored_tree(tree, colors) Compute a mtg from a tree and the list of vertices to be

quotiented.
display_tree(tree, vid[, tab, labels, edge_type]) Display a tree structure.
display_mtg(mtg, vid) Display an MTG

4.1.5 All

class openalea.mtg.mtg.MTG(filename=”, has_date=False)
Bases: openalea.mtg.tree.PropertyTree

A Multiscale Tree Graph (MTG) class.

MTGs describe tree structures at different levels of details, named scales. For example, a botanist can described

250 Chapter 4. Reference

mtg Documentation, Release 2.1.2

plants at different scales :

• at scale 0, the whole scene.

• at scale 1, the individual plants.

• at scale 2, the axes of each plants.

• at scale 3, the growth units of each axis, and so on.

Each scale can have a label, e.g. :

• scale 1 : P(lant)

• scale 2 : A(xis)

• sclae 3 : U(nit of growth)

Compared to a classical tree, complex() can be seen as parent() and components() as children().
An element at scale()N belongs to a complex() at scale()N-1 and has components() at scale N+1:

• /P/A/U (decomposition is noted using “/”)

Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:

• /P1/P2/P3

• A1+A2<A3

• . . .

AlgHeight(v1, v2)
Algebraic value defining the number of components between two components.

This function is similar to function Height(v1, v2) : it returns the number of components between two
components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgHeight(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG.

• v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale,
an error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgOrder(), AlgRank().

AlgOrder(v1, v2)
Algebraic value defining the relative order of one vertex with respect to another one.

This function is similar to function Order(v1, v2) : it returns the number of +-type edges between two
components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

4.1. MTG - Multi-scale Tree Graph 251

mtg Documentation, Release 2.1.2

AlgOrder(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG.

• v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale,
an error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgRank().

AlgRank(v1, v2)
Algebraic value defining the relative rank of one vertex with respect to another one.

This function is similar to function Rank(v1, v2) : it returns the number of <-type edges between two
components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgRank(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG.

• v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale,
an error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgOrder().

Ancestors(v, EdgeType=’*’, RestrictedTo=’NoRestriction’, ContainedIn=None)
Array of all vertices which are ancestors of a given vertex

This function returns the array of vertices which are located before the vertex passed as an argument. These
vertices are defined at the same scale as v. The array starts by v, then contains the vertices on the path from
v back to the root (in this order) and finishes by the tree root.

Note: The anscestor array always contains at least the argument vertex v.

Usage

g.Ancestors(v)

Parameters

252 Chapter 4. Reference

mtg Documentation, Release 2.1.2

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

• EdgeType (str): cf. Father

Returns list of vertices’s id (int)

Examples

>>> v # prints vertex v
78
>>> g.Ancestors(v) # set of ancestors of v at the same scale
[78,45,32,10,4]
>>> list(reversed(g.Ancestors(v))) # To get the vertices in the order from
→˓the root to the vertex v
[4,10,32,45,78]

See also:

MTG(), Descendants().

Axis(v, Scale=-1)
Array of vertices constituting a botanical axis

An axis is a maximal sequence of vertices connected by ‘<’-type edges. Axis return the array of vertices
representing the botanical axis which the argument v belongs to. The optional argument enables the user
to choose the scale at which the axis decomposition is required.

Usage

Axis(v)
Axis(v, Scale=s)

Parameters

• v (int) : Vertex of the active MTG

Optional Parameters

• Scale (str): scale at which the axis components are required.

Returns list of vertices ids

4.1. MTG - Multi-scale Tree Graph 253

mtg Documentation, Release 2.1.2

See also:

MTG(), Path(), Ancestors().

Class(vid)
Class of a vertex.

The Class of a vertex are the first characters of the label. The label of a vertex is the string defined by the
concatenation of the class and its index.

The label thus provides general information about a vertex and enable to encode the plant components.

The class_name may be not defined. Then, an empty string is returned.

Usage

>>> g.class_name(1)

Parameters

• vid (int)

Returns The class name of the vertex (str).

See also:

MTG(), openalea.mtg.aml.Index(), openalea.mtg.aml.Class()

ClassScale(c)
Scale at which appears a given class of vertex

Every vertex is associated with a unique class. Vertices from a given class only appear at a given scale
which can be retrieved using this function.

Usage

ClassScale(c)

Parameters

• c (str) : symbol of the considered class

254 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Returns int

See also:

MTG(), Class(), Scale(), Index().

Complex(v, Scale=-1)
Complex of a vertex.

Returns the complex of v. The complex of a vertex v has a scale lower than v : Scale(v) - 1. In a MTG,
every vertex except for the MTG root (cf. MTGRoot), has a uniq complex. None is returned if the argument
is the MTG Root or if the vertex is undefined.

Usage

g.Complex(v)
g.Complex(v, Scale=2)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (int) : scale of the complex

Returns Returns vertex’s id (int)

Details When a scale different form Scale(v)-1 is specified using the optional parameter Scale,
this scale must be lower than that of the vertex argument.

Todo: Complex(v, Scale=10) returns v why ? is this expected

See also:

MTG(), Components().

ComponentRoots(v, Scale=-1)
Set of roots of the tree graphs that compose a vertex

In a MTG, a vertex may have be decomposed into components. Some of these components are connected
to each other, while other are not. In the most general case, the components of a vertex are organized into
several tree-graphs. This is for example the case of a MTG containing the description of several plants: the
MTG root vertex can be decomposed into tree graphs (not connected) that represent the different plants.
This function returns the set of roots of these tree graphs at scale Scale(v)+1. The order of these roots is
not significant.

When a scale different from Scale(v)+1 is specified using the optional argument Scale(), this scale must
be greater than that of the vertex argument.

Usage

g.ComponentRoots(v)
g.ComponentRoots(v, Scale=s)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

4.1. MTG - Multi-scale Tree Graph 255

mtg Documentation, Release 2.1.2

• Scale (str): scale of the component roots.

Returns list of vertices’s id (int)

Examples

>>> v=g.MTGRoot() # global MTG root
0
>>> g.ComponentRoots(v) # set of first vertices at scale 1
[1,34,76,100,199,255]
>>> g.ComponentRoots(v, Scale=2) # set of first vertices at scale 2
[2,35,77,101,200,256]

See also:

MTG(), Components(), Trunk().

Components(v, Scale=-1)
Set of components of a vertex.

The set of components of a vertex is returned as a list of vertices. If s defines the scale of v, components are
defined at scale s + 1. The array is empty if the vertex has no components. The order of the components in
the array is not significant.

When a scale is specified using optional argument :arg:Scale, it must be necessarily greater than the scale
of the argument.

Usage

Components(v)
Components(v, Scale=2)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

256 Chapter 4. Reference

mtg Documentation, Release 2.1.2

• Scale (int) : scale of the components.

Returns list of int

See also:

MTG(), Complex().

Defined(vid)
Test whether a given vertex belongs to the active MTG.

Usage

Defined(v)

Parameters

• v (int) : vertex of the active MTG

Returns True or False

See also:

MTG().

Descendants(v, EdgeType=’*’, RestrictedTo=’NoRestriction’, ContainedIn=None)
Set of vertices in the branching system borne by a vertex.

This function returns the set of descendants of its argument as an array of vertices. The array thus consists
of all the vertices, at the same scale as v, that belong to the branching system starting at v. The order of the
vertices in the array is not significant.

Note: The argument always belongs to the set of its descendants.

Usage

4.1. MTG - Multi-scale Tree Graph 257

mtg Documentation, Release 2.1.2

g.Descendants(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

• EdgeType (str): cf. Father

Returns list of int.

Examples

>>> v
78
>>> g.Sons(v) # set of sons of v
[78,99,101]
>>> g.Descendants(v) # set of descendants of v
[78,99,101,121,133,135,156,171,190]

See also:

MTG(), Ancestors().

EdgeType(v1, v2)
Type of connection between two vertices.

Returns the symbol of the type of connection between two vertices (either < or +). If the vertices are not
connected, None is returned.

Usage

EdgeType(v1, v2)

258 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns ‘<’ (successor), ‘+’ (branching) or None

See also:

MTG(), Sons(), Father().

Extremities(v, RestrictedTo=’NoRestriction’, ContainedIn=None)
Set of vertices that are the extremities of the branching system born by a given vertex.

This function returns the extremities of the branching system defined by the argument as a list of vertices.
These vertices have the same scale as v and their order in the list is not signifiant. The result is always a
non empty array.

Usage

Extremities(v)

Properties

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father()

• ContainedIn (int): cf. Father()

Returns list of vertices’s id (int)

Examples

>>> g.Descendants(v)
[3, 45, 47, 78, 102]

(continues on next page)

4.1. MTG - Multi-scale Tree Graph 259

mtg Documentation, Release 2.1.2

(continued from previous page)

>>> g.Extremities(v)
[47, 102]

See also:

MTG(), Descendants(), Root(), MTGRoot().

Father(v, EdgeType=’*’, RestrictedTo=’NoRestriction’, ContainedIn=None, Scale=-1)
Topological father of a given vertex.

Returns the topological father of a given vertex. And None if the father does not exist. If the argument is
not a valid vertex, None is returned.

Usage

g.Father(v)
g.Father(v, EdgeType='<')
g.Father(v, RestrictedTo='SameComplex')
g.Father(v, ContainedIn=complex_id)
g.Father(v, Scale=s)

Parameters v (int) : vertex of the active MTG

Optional Parameters If no optional argument is specified, the function returns the topological
father of the argument (vertex that bears or precedes to the vertex passed as an argument).

It may be usefull in some cases to consider that the function only applies to a subpart of the
MTG (e.g. an axis).

The following options enables us to specify such restrictions:

• EdgeType (str) : filter on the type of edge that connect the vertex to its father.

Values can be ‘<’, ‘+’, and ‘*’. Values ‘*’ means both ‘<’ and ‘+’. Only the vertex
connected with the specified type of edge will be considered.

• RestrictedTo (str) : filter defining a subpart of the MTG where the father must be consid-
ered. If the father is actually outside this subpart, the result is None. Possible subparts are
defined using keywords in [‘SameComplex’, ‘SameAxis’, ‘NoRestriction’].

For instance, if RestrictedTo is set to ‘SameComplex’, Father(v)() returns a defined
vertex only if the father f of v existsin the MTG and if v and f have the same complex.

• ContainedIn (int) : filter defining a subpart of the MTG where the father must be consid-
ered. If the father is actually outside this subpart, the result is None.

In this case, the subpart of the MTG is made of the vertices that composed composite_id
(at any scale).

• Scale (int) : the scale of the considered father. Returns the vertex from scale s which either
bears and precedes the argument.

The scale s can be lower than the argument’s (corresponding to a question such as ‘which
axis bears the internode?’) or greater (e.g. ‘which internodes bears this annual shoot?’).

Returns the vertex id of the Father (int)

See also:

MTG(), Defined(), Sons(), EdgeType(), Complex(), Components().

260 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Height(v1, v2=None)
Number of components existing between two components in a tree graph.

The height of a vertex (v2) with respect to another vertex (v1) is the number of edges (of either type ‘+’ or
‘<’) that must be crossed when going from v1 to v2 in the graph.

This is a non-negative integer. When the function has only one argument v1, the height of v1 correspond
to the height of v1‘with respect to the root of the branching system containing ‘v1.

Usage

Height(v1)
Height(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that
one is an ancestor of the other. When the order is relevant, use function AlgHeight.

See also:

MTG(), Order(), Rank(), EdgeType(), AlgHeight(), AlgHeight(), AlgOrder().

Index(vid)
Index of a vertex

The Index of a vertex is a feature always defined and independent of time (like the index). It is represented
by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and
its index. The label thus provides general information about a vertex and enables us to encode the plant
components.

Label(vid)
Label of a vertex.

Usage

>>> g.label(v)

Parameters

• vid (int) : vertex of the MTG

Returns The class and Index of the vertex (str).

See also:

MTG(), index(), class_name()

Path(v1, v2)
List of vertices defining the path between two vertices

This function returns the list of vertices defining the path between two vertices that are in an ancestor
relationship. The vertex v1 must be an ancestor of vertex v2. Otherwise, if both vertices are valid, then the
empty array is returned and if at least one vertex is undefined, None is returned.

Usage

4.1. MTG - Multi-scale Tree Graph 261

mtg Documentation, Release 2.1.2

g.Path(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns list of vertices’s id (int)

Examples

>>> v # print the value of v
78
>>> g.Ancestors(v)
[78,45,32,10,4]
>>> g.Path(10,v)
[10,32,45,78]
>>> g.Path(9,v) # 9 is not an ancestor of 78
[]

Note: v1 can be equal to v2.

See also:

MTG(), Axis(), Ancestors().

Predecessor(v, **kwds)
Father of a vertex connected to it by a ‘<’ edge

This function is equivalent to Father(v, EdgeType-> ‘<’). It thus returns the father (at the same scale) of
the argument if it is located in the same botanical. If it does not exist, None is returned.

Usage

262 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Predecessor(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

Returns return the vertex id (int)

Examples

>>> Predecessor(v)
7
>>> Father(v, EdgeType='+')
>>> Father(v, EdgeType-> '<')
7

See also:

MTG(), Father(), Successor().

Rank(v1, v2=None)
Rank of one vertex with respect to another one.

This function returns the number of consecutive ‘<’-type edges between two components, at the same
scale, and does not take into account the order of vertices v1 and v2. The result is a non negative integer.

Usage

Rank(v1)
Rank(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns int

If v1 is not an ancestor of v2 (or vise versa) within the same botanical axis, or if v1 and v2
are not defined at the same scale, an error value Undef id returned.

See also:

MTG(), Order(), Height(), EdgeType(), AlgRank(), AlgHeight(), AlgOrder().

Root(v, RestrictedTo=’*’, ContainedIn=None)
Root of the branching system containing a vertex

This function is equivalent to Ancestors(v, EdgeType=’<’)[-1]. It thus returns the root of the branching
system containing the argument. This function never returns None.

Usage

g.Root(v)

4.1. MTG - Multi-scale Tree Graph 263

mtg Documentation, Release 2.1.2

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

Returns return vertex’s id (int)

Examples

>>> g.Ancestors(v) # set of ancestors of v
[102,78,35,33,24,12]
>>> g.Root(v) # root of the branching system containing v
12

See also:

MTG(), Extremities().

Scale(vid)
Returns the scale of a vertex.

All vertices should belong to a given scale.

Usage

g.scale(vid)

Parameters

• vid (int) - vertex identifier.

Returns The scale of the vertex. It is a positive int in [0,g.max_scale()].

Sons(v, RestrictedTo=’NoRestriction’, EdgeType=’*’, Scale=-1, ContainedIn=None)
Set of vertices born or preceded by a vertex

264 Chapter 4. Reference

mtg Documentation, Release 2.1.2

The set of sons of a given vertex is returned as an array of vertices. The order of the vertices in the array is
not significant. The array can be empty if there are no son vertices.

Usage

g.Sons(v)
g.Sons(v, EdgeType= '+')
g.Sons(v, Scale= 3)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str) : cf. Father()

• ContainedIn (int) : cf. Father()

• EdgeType (str) : filter on the type of sons.

• Scale (int) : set the scale at which sons are considered.

Returns list(vid)

Details When the option EdgeType is applied, the function returns the set of sons that are con-
nected to the argument with the specified type of relation.

Note: Sons(v, EdgeType= ‘<’) is not equivalent to Successor(v). The first function returns an array of
vertices while the second function returns a vertex.

The returned vertices have the same scale as the argument. However, coarser or finer vertices can be
obtained by specifying the optional argument Scale at which the sons are considered.

Examples

>>> g.Sons(v)
[3,45,47,78,102]
>>> g.Sons(v, EdgeType= '+') # set of vertices borne by v
[3,45,47,102]
>>> g.Sons(v, EdgeType= '<') # set of successors of v on the same axis
[78]

See also:

MTG(), Father(), Successor(), Descendants().

Successor(v, RestrictedTo=’NoRestriction’, ContainedIn=None)
Vertex that is connected to a given vertex by a ‘<’ edge type (i.e. in the same botanical axis).

This function is equivalent to Sons(v, EdgeType=’<’)[0]. It returns the vertex that is connected to a given
vertex by a ‘<’ edge type (i.e. in the same botanical axis). If many such vertices exist, an arbitrary one is
returned by the function. If no such vertex exists, None is returned.

Usage

g.Successor(v)

Parameters

4.1. MTG - Multi-scale Tree Graph 265

mtg Documentation, Release 2.1.2

• v1 (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

Returns Returns vertex’s id (int)

Examples

>>> g.Sons(v)
[3, 45, 47, 78, 102]
>>> g.Sons(v, EdgeType='+') # set of vertices borne by v
[3, 45, 47, 102]
>>> g.Sons(v, EdgeType-> '<') # set of successors of v
[78]
>>> g.Successor(v)
78

See also:

MTG(), Sons(), Predecessor().

Trunk(v, Scale=-1)
List of vertices constituting the bearing botanical axis of a branching system.

Trunk returns the list of vertices representing the botanical axis defined as the bearing axis of the whole
branching system defined by v. The optional argument enables the user to choose the scale at which the
trunk should be detailed.

Usage

Trunk(v)
Trunk(v, Scale= s)

Parameters

• v (int) : Vertex of the active MTG.

Optional Parameters

• Scale (str): scale at which the axis components are required.

Returns list of vertices ids

Todo: check the usage of the optional argument Scale

See also:

MTG(), Path(), Ancestors(), Axis().

VtxList(Scale=-1)
Array of vertices contained in a MTG

The set of all vertices in the MTG() is returned as an array. Vertices from all scales are returned if no
option is used. The order of the elements in this array is not significant.

Usage

266 Chapter 4. Reference

mtg Documentation, Release 2.1.2

>>> VtxList()
>>> VtxList(Scale=2)

Optional Parameters

• Scale (int): used to select components at a particular scale.

Returns

• list of vid

Background MTGs()

See also:

MTG(), scale(), Class(), index().

add_child(parent, child=None, **properties)
Add a child to a parent. Child is appended to the parent’s child list.

Parameters

• parent (int) - The parent identifier.

• child (int or None) - The child identifier. If None, an ID is generated.

Returns Identifier of the inserted vertex (child)

Returns Type int

add_child_and_complex(parent, child=None, complex=None, **properties)
Add a child at the end of children that belong to an other complex.

Parameters

• parent: The parent identifier.

• child: Set the child identifier to this value if defined.

• complex: Set the complex identifier to this value if defined.

Returns (vid, vid): child and complex ids.

add_child_tree(parent, tree)
Add a tree after the children of the parent vertex. Complexity have to be O(1) if tree == sub_tree()

Parameters

• parent – vertex identifier

• tree – a rooted tree

add_component(complex_id, component_id=None, **properties)
Add a component at the end of the components

Parameters

• complex_id: The complex identifier.

• component_id: Set the component identifier to this value if defined.

Returns The id of the new component or the component_id if given.

add_element(parent_id, edge_type=’/’, scale_id=None)
Add an element to the graph, if vid is not provided create a new vid ??? .. warning: Not Implemented.

Parameters

4.1. MTG - Multi-scale Tree Graph 267

mtg Documentation, Release 2.1.2

• parent_id (int) - The id of the parent vertex

• edge_type (str) - The type of relation:

– “/” : component (default)

– “+” : branch

– “<” : successor.

• scale_id (int) - The id of the scale in which to add the vertex.

Returns The vid of the created vertex

add_property(property_name)
Add a new map between vid and a data Do not fill this property for any vertex

backward_rewriting_traversal()

children(vtx_id)
returns a vertex iterator

Parameters vtx_id – The vertex identifier.

Returns iter of vertex identifier

children_iter(vtx_id)
returns a vertex iterator

Parameters vtx_id – The vertex identifier.

Returns iter of vertex identifier

class_name(vid)
Class of a vertex.

The Class of a vertex are the first characters of the label. The label of a vertex is the string defined by the
concatenation of the class and its index.

The label thus provides general information about a vertex and enable to encode the plant components.

The class_name may be not defined. Then, an empty string is returned.

Usage

>>> g.class_name(1)

Parameters

• vid (int)

Returns The class name of the vertex (str).

See also:

MTG(), openalea.mtg.aml.Index(), openalea.mtg.aml.Class()

clear()
Remove all vertices and edges from the MTG.

This also removes all vertex properties. Don’t change references to object such as internal dictionaries.

Example

268 Chapter 4. Reference

mtg Documentation, Release 2.1.2

>>> g.clear()
>>> g.nb_vertices()
0
>>> len(g)
0

clear_properties(exclude=[])
Remove all the properties of the MTG.

Example

>>> g.clear_properties()

complex(vtx_id)
Returns the complex of vtx_id.

Parameters

• vtx_id (int) - The vertex identifier.

Returns complex identifier or None if vtx_id has no parent.

Return Type int

complex_at_scale(vtx_id, scale)
Returns the complex of vtx_id at scale scale.

Parameters

• vtx_id: The vertex identifier.

• scale: The scale identifier.

Returns vertex identifier

Returns Type int

component_roots(vtx_id)
Return the set of roots of the tree graphs that compose a vertex.

component_roots_at_scale(vtx_id, scale)
Return the list of roots of the tree graphs that compose a vertex.

component_roots_at_scale_iter(vtx_id, scale)
Return the set of roots of the tree graphs that compose a vertex.

component_roots_iter(vtx_id)
Return an iterator of the roots of the tree graphs that compose a vertex.

components(vid)
returns the components of a vertex

Parameters vid – The vertex identifier.

Returns list of vertex identifier

components_at_scale(vid, scale)
returns a vertex iterator

Parameters

• vid: The vertex identifier.

Returns iter of vertex identifier

4.1. MTG - Multi-scale Tree Graph 269

mtg Documentation, Release 2.1.2

components_at_scale_iter(vid, scale)
returns a vertex iterator

Parameters

• vid: The vertex identifier.

Returns iter of vertex identifier

components_iter(vid)
returns a vertex iterator

Parameters vid – The vertex identifier.

Returns iter of vertex identifier

copy()
Return a copy of the graph.

Returns

• g (MTG) - A copy of the MTG

display(max_scale=0, display_id=True, display_scale=False, nb_tab=12, **kwds)
Print an MTG on the console.

Optional Parameters

• max_scale: do not print vertices of scale greater than max_scale

• display_id: display the vid of the vertices

• display_scale: display the scale of the vertices

• nb_tab: display the MTG using nb_tab columns

edge_type(vid)
Type of the edge between a vertex and its parent.

The different values are ‘<’ for successor, and ‘+’ for ramification.

edges(scale=-1)

Parameters

• scale (int) - Scale at which to iterate.

Returns Iterator on the edges of the MTG at a given scale or on all edges if scale < 0.

Returns Type iter

forward_rewriting_traversal()

get_root()
Return the tree root.

Returns vertex identifier

get_vertex_property(vid)
Returns all the properties defined on a vertex.

graph_properties()
return a dict containing the graph properties/

Return type dict of {property_name:data}

has_vertex(vid)
Tests whether a vertex belongs to the graph.

270 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Parameters

• vid (int) - vertex id to test

Returns Type bool

index(vid)
Index of a vertex

The Index of a vertex is a feature always defined and independent of time (like the index). It is represented
by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and
its index. The label thus provides general information about a vertex and enables us to encode the plant
components.

insert_parent(vtx_id, parent_id=None, **properties)
Insert parent_id between vtx_id and its actual parent. Inherit of the complex of the parent of vtx_id.

Parameters

• vtx_id (int): a vertex identifier

• parent_id (int): a vertex identifier

Returns Identifier of the inserted vertex (parent_id).

Returns Type int

insert_scale(inf_scale=None, partition=None, default_label=None, preserve_order=True)
Add a scale to MTG

Parameters

• inf_scale (int) - New scale is inserted between inf_scale and inf_scale-1

• partition (lambda v: bool) - Function defining new scale by quotienting vertices at inf_scale

• default_label (str) - default label of inserted vertices

• preserve_order (bool) - True iif children at new scale are ordered consistently with children at
inf_scale

Returns MTG with inserted scale

Remark

• New scale is inserted in self as well.

• function partition should return True at roots of subtrees where partition changes

and False elsewhere.

insert_sibling(vtx_id1, vtx_id2=None, **properties)
Insert a sibling of vtk_id1. The vertex in inserted before vtx_id1.

Parameters

• vtx_id1 (int) : a vertex identifier

• vtx_id2 (int) : the vertex to insert

Returns Identifier of the inserted vertex (vtx_id2)

Returns Type int

4.1. MTG - Multi-scale Tree Graph 271

mtg Documentation, Release 2.1.2

insert_sibling_tree(vid, tree)
Insert a tree before the vid. vid and the root of the tree are siblings. Complexity have to be O(1) if tree
comes from the actual tree (tree= self.sub_tree())

Parameters

• vid – vertex identifier

• tree – a rooted tree

is_leaf(vtx_id)
Test if vtx_id is a leaf.

Returns bool

is_valid()
Tests the validity of the graph. Currently always returns True.

Returns Type bool

Todo Implement this function.

iter_edges(scale=-1)

Parameters

• scale (int) - Scale at which to iterate.

Returns Iterator on the edges of the MTG at a given scale or on all edges if scale < 0.

Returns Type iter

iteredges(scale=-1)
Iter on the edges of the tree.

label(vid)
Label of a vertex.

Usage

>>> g.label(v)

Parameters

• vid (int) : vertex of the MTG

Returns The class and Index of the vertex (str).

See also:

MTG(), index(), class_name()

max_scale()
Return the max scale identifier.

By convention, the mtg contains scales in [0,𝑚𝑎𝑥_𝑠𝑐𝑎𝑙𝑒].

Usage

>>> print g.max_scale()

Returns S, the maximum scale identifier.

Note: The complexity is 𝑂(𝑛).

272 Chapter 4. Reference

mtg Documentation, Release 2.1.2

See also:

scale(), scales()

nb_children(vtx_id)
returns the number of children

Parameters

• vtx_id: The vertex identifier.

Returns int

nb_components(vid)
returns the number of components

Parameters

• vid: The vertex identifier.

Returns int

nb_scales()

Returns The number of scales defined in the mtg..

Returns Type int

Note: The complexity is 𝑂(𝑛).

nb_siblings(vtx_id)
returns the number of siblings

Returns int

nb_vertices(scale=-1)
Returns the number of vertices.

Usage

>>> g.nb_vertices()
100
>>> g.nb_vertices(scale=3)
68

Parameters

• scale (int) - Id of scale for which to count vertices.

Returns Number of vertices at scale or total number of vertices if scale < 0.

node(vid, klass=None)
Return a node associated to the vertex vid.

It allows to access to the properties with an object oriented interface.

Example

node = g.node(1)
print node.edge_type
print node.label
node.label = 'B'
print g.label(1)

(continues on next page)

4.1. MTG - Multi-scale Tree Graph 273

mtg Documentation, Release 2.1.2

(continued from previous page)

print node.parent
print list(node.children)

order(v1)
Order of a vertex in a graph.

The order of a vertex in a graph is the number of ‘+’ edges crossed when going from v1‘to ‘v2.

If v2 is None, the order of v1 correspond to the order of v1 with respect to the root.

parent(vtx_id)
Return the parent of vtx_id.

Parameters

• vtx_id: The vertex identifier.

Returns vertex identifier

plot_property(prop, **kwds)
Plot properties of MTG using matplotlib

Example

>>> g.plot_property('length')

properties()
Returns all the property maps contain in the graph.

property(name)
Returns the property map between the vid and the data. :returns: dict of {vid:data}

property_names()
names of all property maps. Properties are defined only on vertices, even edge properties. return iter of
names

property_names_iter()
iter on names of all property maps. Properties are defined only on vertices, even edge properties. return
iter of names

reindex(mapping=None, copy=False)
Assign a new identifier to each vertex.

This method assigns a new identifier to each vertex of the MTG. The mapping can be user defined or is
implicit (mapping). This method modify the MTG in place or return a new MTG (copy).

Usage

>>> g.reindex()
>>> g1 = g.reindex(copy=True)
>>> mymap = dict(zip(list(traversal.iter_mtg2(g,g.root)), range(len(g))))
>>> g2 = g.reindex(mapping=mymap, copy=True)

Optional Parameters

• mapping (dict): define a mapping between old and new vertex identifiers.

• copy (bool) : modify the object in place or return a new MTG.

Returns

274 Chapter 4. Reference

mtg Documentation, Release 2.1.2

• a MTG

Background MTGs()

See also:

sub_mtg()

remove_property(property_name)
Remove the property map called property_name from the graph.

remove_scale(scale)
Remove all the vertices at a given scale.

The upper and lower scale are then connected.

• scale : the scale that have to be removed

Returns

• - g (the input MTG modified in place.)

• - results (a list of dict) – all the vertices that have been removed

remove_tree(vtx_id)
Remove the sub tree rooted on vtx_id.

Returns bool

remove_vertex(vid, reparent_child=False)
Remove a specified vertex of the graph and remove all the edges attached to it.

Parameters

• vid (int) : the id of the vertex to remove

• reparent_child (bool) : reparent the children of vid to its parent.

Returns None

replace_parent(vtx_id, new_parent_id, **properties)
Change the parent of vtx_id to new_parent_id. The new parent of vtx_id is new_parent_id. vtx_id and
new_parent_id must have the same scale.

This function do not change the edge_type between vtx_id and its parent.

Inherit of the complex of the parent of vtx_id.

Parameters

• vtx_id (int): a vertex identifier

• new_parent_id (int): a vertex identifier

Returns None

roots(scale=0)
Returns a list of the roots of the tree graphs at a given scale.

In an MTG, the MTG root vertex, namely the vertex g.root, can be decomposed into several, non-
connected, tree graphs at a given scale. This is for example the case of an MTG containing the description
of several plants.

Usage roots = g.roots(scale=g.max_scale()

Returns list on vertex identifiers of root vertices at a given scale.

4.1. MTG - Multi-scale Tree Graph 275

mtg Documentation, Release 2.1.2

Returns Type list of vid

roots_iter(scale=0)
Returns an iterator of the roots of the tree graphs at a given scale.

In an MTG, the MTG root vertex, namely the vertex g.root, can be decomposed into several, non-
connected, tree graphs at a given scale. This is for example the case of an MTG containing the description
of several plants.

Usage roots = list(g.roots(scale=g.max_scale())

Returns iterator on vertex identifiers of root vertices at a given scale.

Returns Type iter

276 Chapter 4. Reference

mtg Documentation, Release 2.1.2

scale(vid)
Returns the scale of a vertex.

All vertices should belong to a given scale.

Usage

g.scale(vid)

Parameters

• vid (int) - vertex identifier.

Returns The scale of the vertex. It is a positive int in [0,g.max_scale()].

scales()
Return the different scales of the mtg.

Returns Iterator on scale identifiers (ints).

Note: The complexity is 𝑂(𝑛).

scales_iter()
Return the different scales of the mtg.

Returns Iterator on scale identifiers (ints).

Note: The complexity is 𝑂(𝑛).

set_root(vtx_id)
Set the tree root.

Parameters vtx_id – The vertex identifier.

siblings(vtx_id)
returns an iterator of vtx_id siblings. vtx_id is not include in siblings.

Parameters

• vtx_id: The vertex identifier.

Returns iter of vertex identifier

siblings_iter(vtx_id)
returns an iterator of vtx_id siblings. vtx_id is not include in siblings.

Parameters

• vtx_id: The vertex identifier.

Returns iter of vertex identifier

sub_mtg(vtx_id, copy=True)
Return the submtg rooted on vtx_id.

The induced sub mtg of the mtg are all the vertices which have vtx_id has a complex plus vtx_id.

Parameters

• vtx_id: A vertex of the original tree.

4.1. MTG - Multi-scale Tree Graph 277

mtg Documentation, Release 2.1.2

• copy: If True, return a new tree holding the subtree. If False, the subtree is created using
the original tree by deleting all vertices not in the subtree.

Returns A sub mtg of the mtg. If copy=True, a new MTG is returned. Else the sub mtg is
created inplace by modifying the original tree.

sub_tree(vtx_id, copy=True)
Return the subtree rooted on vtx_id.

The induced subtree of the tree has the vertices in the ancestors of vtx_id.

Parameters

• vtx_id: A vertex of the original tree.

• copy: If True, return a new tree holding the subtree. If False, the subtree is created using
the original tree by deleting all vertices not in the subtree.

Returns A sub tree of the tree. If copy=True, a new Tree is returned. Else the subtree is created
inplace by modifying the original tree.

vertices(scale=-1)
Return a list of the vertices contained in an MTG.

The set of all vertices in the MTG is returned. Vertices from all scales are returned if no scale is given.
Otherwise, it returns only the vertices of the given scale. The order of the elements in this array is not
significant.

Usage

g = MTG()
len(g) == len(list(g.vertices()))
for vid in g.vertices(scale=2):

print g.class_name(vid)

Optional Parameters

• scale (int): used to select vertices at a given scale.

Returns Iterator on vertices at “scale” or on all vertices if scale < 0.

Returns Type list of vid

Background

See also:

children(), components(), vertices_iter()..

vertices_iter(scale=-1)
Return an iterator of the vertices contained in an MTG.

The set of all vertices in the MTG is returned. Vertices from all scales are returned if no scale is given.
Otherwise, it returns only the vertices of the given scale. The order of the elements in this array is not
significant.

Usage

g = MTG()
len(g) == len(list(g.vertices()))
for vid in g.vertices(scale=2):

print g.class_name(vid)

278 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Optional Parameters

• scale (int): used to select vertices at a given scale.

Returns Iterator on vertices at “scale” or on all vertices if scale < 0.

Returns Type iter of vid

Background

See also:

children(), components().

root
Return the tree root.

Returns vertex identifier

openalea.mtg.mtg.simple_tree(tree, vtx_id, nb_children=3, nb_vertices=20)
Generate and add a regular tree to an existing one at a given vertex.

Add a regular tree at a given vertex id position vtx_id. The length of the sub_tree is nb_vertices. Each new
vertex has at most nb_children children.

Parameters

• tree: the tree thaat will be modified

• vtx_id (id): vertex on which the sub tree will be added.

• nb_children (int) : number of children that are added to each vertex

• nb_vertices (int) : number of vertices to add

Returns The modified tree

Examples

g = MTG()
vid = g.add_component(g.root)
simple_tree(g, vid, nb_children=2, nb_vertices=20)
print len(g) # 22

See also:

random_tree(), random_mtg()

openalea.mtg.mtg.random_tree(mtg, root, nb_children=3, nb_vertices=20)
Generate and add a random tree to an existing one.

Add a random sub tree at a given vertex id position root. The length of the sub_tree is nb_vertices. The number
of children for each vertex is sampled according to nb_children distribution. If nb_children is an interger, the
random distribution is uniform between [1, nb_children]. Otherwise, you can give your own discrete distribution
sampling function.

Parameters

• mtg: the mtg to modified

• root (id): vertex id on which the sub tree will be added.

Optional Parameters

• nb_vertices

• nb_children : an int or a discrete distribution sampling function.

4.1. MTG - Multi-scale Tree Graph 279

mtg Documentation, Release 2.1.2

Returns The last added vid.

Examples

g = MTG()
vid = g.add_component(g.root)
random_tree(g, vid, nb_children=2, nb_vertices=20)
print len(g) # 22

See also:

simple_tree(), random_mtg()

openalea.mtg.mtg.random_mtg(tree, nb_scales)
Convert a tree into an MTG of nb_scales.

Add a random sub tree at a given vertex id position root. The length of the sub_tree is nb_vertices. Each new
vertex has at most nb_children children.

Parameters

• mtg: the mtg to modified

• root (id): vertex id on which the sub tree will be added.

Returns The last added vid.

Examples

g = MTG()
random_tree(g, g.root, nb_children=2, nb_vertices=20)
print len(g) # 21

See also:

simple_tree(), random_tree()

openalea.mtg.mtg.colored_tree(tree, colors)
Compute a mtg from a tree and the list of vertices to be quotiented.

Note: The tree has to be a real tree and not an MTG

Example

from random import randint, sample
g = MTG()
random_tree(g, g.root, nb_vertices=200)

At each scale, define the vertices which will define a complex
nb_scales=4
colors = {}
colors[3] = g.vertices()
colors[2] = random.sample(colors[3], randint(1,len(g)))
colors[2].sort()
if g.root not in colors[2]:

colors[2].insert(0, g.root)
colors[1] = [g.root]

g, mapping = colored_tree(g, colors)

280 Chapter 4. Reference

mtg Documentation, Release 2.1.2

openalea.mtg.mtg.display_tree(tree, vid, tab=”, labels={}, edge_type={})
Display a tree structure.

openalea.mtg.mtg.display_mtg(mtg, vid)
Display an MTG

..todo:: Write doc.

Download the source file ../../src/mtg/mtg.py.

4.2 High level reporting function compatible with AML

Interface to use the new MTG implementation with the old AMAPmod interface.

openalea.mtg.aml.Activate(g)
Activate a MTG already loaded into memory

All the functions of the MTG module use an implicit MTG argument which is defined as the active MTG.

This function activates a MTG already loaded into memory which thus becomes the implicit argument of all
functions of module MTG.

Usage

>>> Activate(g)

Parameters

• g: MTG to be activated

Details When several MTGs are loaded into memory, only one is active at a time. By default, the
active MTG is the last MTG loaded using function MTG().

However, it is possible to activate an MTG already loaded using function Activate() The
current active MTG can be identified using function Active().

Background MTG()

See also:

MTG()

openalea.mtg.aml.Active()
Returns the active MTG.

If no MTG is loaded into memory, None is returned.

Usage

>>> Active()

Returns

• MTG()

Details When several MTGs are loaded into memory, only one is active at a time. By default, the
active MTG is the last MTG loaded using function MTG(). However, it is possible to activate an
MTG already loaded using function Activate(). The current active MTG can be identified
using function Active().

4.2. High level reporting function compatible with AML 281

mtg Documentation, Release 2.1.2

See also:

MTG(), Activate().

openalea.mtg.aml.AlgHeight(v1, v2)
Algebraic value defining the number of components between two components.

This function is similar to function Height(v1, v2) : it returns the number of components between two compo-
nents, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgHeight(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG.

• v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an
error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgOrder(), AlgRank().

openalea.mtg.aml.AlgOrder(v1, v2)
Algebraic value defining the relative order of one vertex with respect to another one.

This function is similar to function Order(v1, v2) : it returns the number of +-type edges between two compo-
nents, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgOrder(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG.

• v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an
error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgRank().

openalea.mtg.aml.AlgRank(v1, v2)
Algebraic value defining the relative rank of one vertex with respect to another one.

This function is similar to function Rank(v1, v2) : it returns the number of <-type edges between two compo-
nents, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

282 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Usage

AlgRank(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG.

• v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an
error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgOrder().

openalea.mtg.aml.Alpha(e1, e2)

openalea.mtg.aml.Ancestors(v, EdgeType=’*’, RestrictedTo=’NoRestriction’, ContainedIn=None)
Array of all vertices which are ancestors of a given vertex

This function returns the array of vertices which are located before the vertex passed as an argument. These
vertices are defined at the same scale as v. The array starts by v, then contains the vertices on the path from v
back to the root (in this order) and finishes by the tree root.

Note: The anscestor array always contains at least the argument vertex v.

Usage

Ancestors(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

• EdgeType (str): cf. Father

Returns list of vertices’s id (int)

Examples

>>> v # prints vertex v
78
>>> Ancestors(v) # set of ancestors of v at the same scale
[78,45,32,10,4]
>>> list(reversed(Ancestors(v))) # To get the vertices in the order from the root
→˓to the vertex v
[4,10,32,45,78]

4.2. High level reporting function compatible with AML 283

mtg Documentation, Release 2.1.2

See also:

MTG(), Descendants().

openalea.mtg.aml.Axis(v, Scale=-1)
Array of vertices constituting a botanical axis

An axis is a maximal sequence of vertices connected by ‘<’-type edges. Axis return the array of vertices
representing the botanical axis which the argument v belongs to. The optional argument enables the user to
choose the scale at which the axis decomposition is required.

Usage

Axis(v)
Axis(v, Scale=s)

Parameters

• v (int) : Vertex of the active MTG

Optional Parameters

• Scale (str): scale at which the axis components are required.

Returns list of vertices ids

See also:

MTG(), Path(), Ancestors().

openalea.mtg.aml.Beta(e1, e2)

openalea.mtg.aml.BottomCoord(e1, e2)

openalea.mtg.aml.BottomDiameter(e1, e2)

openalea.mtg.aml.Class(vid)
Class of a vertex

The Class() of a vertex is a feature always defined and independent of time (like the index). It is represented
by an alphabetic character in upper or lower case (lower cases characters are considered different from upper

284 Chapter 4. Reference

mtg Documentation, Release 2.1.2

cases). The label of a vertex is the string defined by the concatenation of its class and its index. The label thus
provides general information about a vertex and enables us to encode the plant components.

Usage

>>> Class(v)

Parameters

• vid (int) : vertex of the active MTG

Returns The class of the vertex.

See also:

MTG(), Index(), Scale().

openalea.mtg.aml.ClassScale(c)
Scale at which appears a given class of vertex

Every vertex is associated with a unique class. Vertices from a given class only appear at a given scale which
can be retrieved using this function.

Usage

ClassScale(c)

Parameters

• c (str) : symbol of the considered class

Returns int

See also:

MTG(), Class(), Scale(), Index().

openalea.mtg.aml.Complex(v, Scale=-1)
Complex of a vertex.

Returns the complex of v. The complex of a vertex v has a scale lower than v : Scale(v) - 1. In a MTG, every
vertex except for the MTG root (cf. MTGRoot), has a uniq complex. None is returned if the argument is the
MTG Root or if the vertex is undefined.

Usage

Complex(v)
Complex(v, Scale=2)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (int) : scale of the complex

Returns Returns vertex’s id (int)

Details When a scale different form Scale(v)-1 is specified using the optional parameter Scale, this
scale must be lower than that of the vertex argument.

4.2. High level reporting function compatible with AML 285

mtg Documentation, Release 2.1.2

Todo: Complex(v, Scale=10) returns v why ? is this expected

See also:

MTG(), Components().

openalea.mtg.aml.ComponentRoots(v, Scale=-1)
Set of roots of the tree graphs that compose a vertex

In a MTG, a vertex may have be decomposed into components. Some of these components are connected to
each other, while other are not. In the most general case, the components of a vertex are organized into several
tree-graphs. This is for example the case of a MTG containing the description of several plants: the MTG root
vertex can be decomposed into tree graphs (not connected) that represent the different plants. This function
returns the set of roots of these tree graphs at scale Scale(v)+1. The order of these roots is not significant.

When a scale different from Scale(v)+1 is specified using the optional argument Scale(), this scale must be
greater than that of the vertex argument.

Usage

ComponentRoots(v)
ComponentRoots(v, Scale=s)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (str): scale of the component roots.

Returns list of vertices’s id (int)

Examples

>>> v=MTGRoot() # global MTG root
0
>>> ComponentRoots(v) # set of first vertices at scale 1
[1,34,76,100,199,255]
>>> ComponentRoots(v, Scale=2) # set of first vertices at scale 2
[2,35,77,101,200,256]

286 Chapter 4. Reference

mtg Documentation, Release 2.1.2

See also:

MTG(), Components(), Trunk().

openalea.mtg.aml.Components(v, Scale=-1)
Set of components of a vertex.

The set of components of a vertex is returned as a list of vertices. If s defines the scale of v, components are
defined at scale s + 1. The array is empty if the vertex has no components. The order of the components in the
array is not significant.

When a scale is specified using optional argument :arg:Scale, it must be necessarily greater than the scale of the
argument.

Usage

Components(v)
Components(v, Scale=2)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (int) : scale of the components.

Returns list of int

4.2. High level reporting function compatible with AML 287

mtg Documentation, Release 2.1.2

See also:

MTG(), Complex().

openalea.mtg.aml.Coord(e1, e2)

openalea.mtg.aml.DateSample(e1)
Array of observation dates of a vertex.

Returns the set of dates at which a given vertex (passed as an argument) has been observed as an array of
ordered dates. Options can be specified to define a temporal window and the total list of observation dates will
be truncated according to the corresponding temporal window.

Usage

DateSample(v)
DateSample(v, MinDate=d1, MaxDate=d2)

Parameters

• v (VTX) : vertex of the active MTG.

Optional Parameters

• MinDate (date) : defines a minimum date of interest.

• MaxDate (date) : defines a maximum date of interest.

Returns list of date

See also:

MTG(), FirstDefinedFeature(), LastDefinedFeature(), PreviousDate(), NextDate().

openalea.mtg.aml.Defined(vid)
Test whether a given vertex belongs to the active MTG.

Usage

288 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Defined(v)

Parameters

• v (int) : vertex of the active MTG

Returns True or False

See also:

MTG().

openalea.mtg.aml.Descendants(v, EdgeType=’*’, RestrictedTo=’NoRestriction’, Con-
tainedIn=None)

Set of vertices in the branching system borne by a vertex.

This function returns the set of descendants of its argument as an array of vertices. The array thus consists of all
the vertices, at the same scale as v, that belong to the branching system starting at v. The order of the vertices in
the array is not significant.

Note: The argument always belongs to the set of its descendants.

Usage

Descendants(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

• EdgeType (str): cf. Father

Returns list of int.

Examples

>>> v
78
>>> Sons(v) # set of sons of v
[78,99,101]
>>> Descendants(v) # set of descendants of v
[78,99,101,121,133,135,156,171,190]

4.2. High level reporting function compatible with AML 289

mtg Documentation, Release 2.1.2

See also:

MTG(), Ancestors().

openalea.mtg.aml.DressingData(e1)
Use openalea.mtg.dresser.DressingData instead of this function

openalea.mtg.aml.EdgeType(v1, v2)
Type of connection between two vertices.

Returns the symbol of the type of connection between two vertices (either < or +). If the vertices are not
connected, None is returned.

Usage

EdgeType(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns ‘<’ (successor), ‘+’ (branching) or None

290 Chapter 4. Reference

mtg Documentation, Release 2.1.2

See also:

MTG(), Sons(), Father().

openalea.mtg.aml.Extremities(v, RestrictedTo=’NoRestriction’, ContainedIn=None)
Set of vertices that are the extremities of the branching system born by a given vertex.

This function returns the extremities of the branching system defined by the argument as a list of vertices. These
vertices have the same scale as v and their order in the list is not signifiant. The result is always a non empty
array.

Usage

Extremities(v)

Properties

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father()

• ContainedIn (int): cf. Father()

Returns list of vertices’s id (int)

Examples

>>> Descendants(v)
[3, 45, 47, 78, 102]
>>> Extremities(v)
[47, 102]

See also:

MTG(), Descendants(), Root(), MTGRoot().

4.2. High level reporting function compatible with AML 291

mtg Documentation, Release 2.1.2

openalea.mtg.aml.Father(v, EdgeType=’*’, RestrictedTo=’NoRestriction’, ContainedIn=None,
Scale=-1)

Topological father of a given vertex.

Returns the topological father of a given vertex. And None if the father does not exist. If the argument is not a
valid vertex, None is returned.

Usage

Father(v)
Father(v, EdgeType='<')
Father(v, RestrictedTo='SameComplex')
Father(v, ContainedIn=complex_id)
Father(v, Scale=s)

Parameters v (int) : vertex of the active MTG

Optional Parameters If no optional argument is specified, the function returns the topological fa-
ther of the argument (vertex that bears or precedes to the vertex passed as an argument).

It may be usefull in some cases to consider that the function only applies to a subpart of the
MTG (e.g. an axis).

The following options enables us to specify such restrictions:

• EdgeType (str) : filter on the type of edge that connect the vertex to its father.

Values can be ‘<’, ‘+’, and ‘*’. Values ‘*’ means both ‘<’ and ‘+’. Only the vertex connected
with the specified type of edge will be considered.

• RestrictedTo (str) : filter defining a subpart of the MTG where the father must be considered.
If the father is actually outside this subpart, the result is None. Possible subparts are defined
using keywords in [‘SameComplex’, ‘SameAxis’, ‘NoRestriction’].

For instance, if RestrictedTo is set to ‘SameComplex’, Father(v)() returns a defined
vertex only if the father f of v existsin the MTG and if v and f have the same complex.

• ContainedIn (int) : filter defining a subpart of the MTG where the father must be considered.
If the father is actually outside this subpart, the result is None.

In this case, the subpart of the MTG is made of the vertices that composed composite_id (at
any scale).

• Scale (int) : the scale of the considered father. Returns the vertex from scale s which either
bears and precedes the argument.

The scale s can be lower than the argument’s (corresponding to a question such as ‘which
axis bears the internode?’) or greater (e.g. ‘which internodes bears this annual shoot?’).

Returns the vertex id of the Father (int)

See also:

MTG(), Defined(), Sons(), EdgeType(), Complex(), Components().

openalea.mtg.aml.Feature(vid, fname, date=None)
Extracts the attributes of a vertex.

Returns the value of the attribute fname of a vertex in a MTG.

If the value of an attribute is not defined in the coding file, the value None is returned.

Usage

292 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Feature(vid, fname)
Feature(vid, fname, date)

Parameters

• vid (int) : vertex of the active MTG.

• fname (str) : name of the attribute (as specified in the coding file).

• date (date) : (for a dynamic MTG) date at which the attribute of the vertex is considered.

Returns int, str, date or float

Details If for a given attribute, several values are available(corresponding to different dates), the date
of interest must be specified as a third attribute.

This date must be a valid date appearing in the coding file for a considered vertex. Otherwise
None is returned.

Background MTGs and Dynamic MTGs.

Todo: specify the format of date

See also:

MTG(), Class(), Index(), Scale().

openalea.mtg.aml.FirstDefinedFeature(e1, e2)
Date of first observation of a vertex.

Returns the date d for which the attribute fname is defined for the first time on the vertex v passed as an argument.
This date must be greater than the option MinDate and/or less than the maximum MaxData when specified.
Otherwise the returned date is None.

Usage

FirstDefinedFeature(v, fname)
FirstDefinedFeature(v, fname, MinDate=d1, MaxDate=d2)

Properties

• v (int) : vertex of the active MTG

• fname (str) : name of the considered property

Optional Properties

• MinDate (date) : minimum date of interest.

• MaxData (date) : maximum date of interest.

Returns date

See also:

MTG(), DateSample(), LastDefinedFeature(), PreviousDate(), NextDate().

openalea.mtg.aml.Height(v1, v2=None)
Number of components existing between two components in a tree graph.

4.2. High level reporting function compatible with AML 293

mtg Documentation, Release 2.1.2

The height of a vertex (v2) with respect to another vertex (v1) is the number of edges (of either type ‘+’ or ‘<’)
that must be crossed when going from v1 to v2 in the graph.

This is a non-negative integer. When the function has only one argument v1, the height of v1 correspond to the
height of v1‘with respect to the root of the branching system containing ‘v1.

Usage

Height(v1)
Height(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that one is
an ancestor of the other. When the order is relevant, use function AlgHeight.

See also:

MTG(), Order(), Rank(), EdgeType(), AlgHeight(), AlgHeight(), AlgOrder().

openalea.mtg.aml.Index(vid)
Index of a vertex

The Index() of a vertex is a feature always defined and independent of time (like the index). It is represented
by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and its index.
The label thus provides general information about a vertex and enables us to encode the plant components.

Usage

>>> Index(v)

Parameters

• vid (int) : vertex of the active MTG

Returns int

See also:

MTG(), Class(), Scale()

openalea.mtg.aml.Label(v)
Label of a vertex

Usage

>>> Label(v) #doctest: +SKIP

Parameters

• vid (int) : vertex of the active MTG

Returns The class and Index of the vertex (str).

294 Chapter 4. Reference

mtg Documentation, Release 2.1.2

See also:

MTG(), Index(), Class()

openalea.mtg.aml.LastDefinedFeature(e1, e2)
Date of last observation of a given attribute of a vertex.

Returns the date d for which the attribute fname is defined for the last time on the vertex v passed as an argument.
This date must be greater than the option MinDate and/or less than the maximum MaxData when specified.
Otherwise the returned date is None.

Usage

FirstDefinedFeature(v, fname)
FirstDefinedFeature(v, fname, MinDate=d1, MaxDate=d2)

Properties

• v (int) : vertex of the active MTG

• fname (str) : name of the considered property

Optional Properties

• MinDate (date) : minimum date of interest.

• MaxData (date) : maximum date of interest.

Returns date

See also:

MTG(), DateSample(), FirstDefinedFeature(), PreviousDate(), NextDate().

openalea.mtg.aml.Length(e1, e2)

openalea.mtg.aml.Location(v, Scale=-1, ContainedIn=None)
Vertex defining the father of a vertex with maximum scale.

If no options are supplied, this function returns the vertex defining the father of a vertex with maximum scale
(cf. Father()). If it does not exist, None is returned. If a scale is specified, the function is equivalent to
Father(v, Scale=s).

Usage

Location(v)
Location(v, Scale=s)
Location(v, ContainedIn=complex_id)

Parameters

• v (int) : vertex of the active MTG.

Optional Parameters

• Scale (int) : scale at which the location is required.

• ContainedIn (int) : cf. Father()

Returns Returns vertex’s id (int)

Examples

4.2. High level reporting function compatible with AML 295

mtg Documentation, Release 2.1.2

>>> Father(v, EdgeType='+')
7
>>> Complex(v)
4
>>> Components(7)
[9,19,23, 34, 77, 89]
>>> Location(v)
23
>>> Location(v, Scale= Scale(v)+1)
23
>>> Location(v, Scale= Scale(v))
7
>>> Location(v, Scale= Scale(v)-1)
4

See also:

MTG(), Father().

openalea.mtg.aml.MTG(filename)
MTG constructor.

Builds a MTG from a coding file (text file) containing the description of one or several plants.

Usage

MTG(filename)

Parameters

• filename (str): name of the coding file describing the mtg

Returns If the parsing process succeeds, returns an object of type MTG(). Otherwise, an error is
generated, and the formerly active MTG remains active.

Side Effect If the MTG() is built, the new MTG() becomes the active MTG() (i.e. the MTG()
implicitly used by other functions such as Father(), Sons(), VtxList(), . . .).

Details The parsing process is approximatively proportional to the number of components defined
in the coding file.

Background MTG is an acronyme for Multiscale Tree Graph.

See also:

Activate() and all openalea.mtg.aml functions.

openalea.mtg.aml.MTGRoot()
Returns the root vertex of the MTG.

It is the only vertex at scale 0 (the coarsest scale).

Usage

>>> MTGRoot()

Returns

• vtx identifier

Details This vertex is the complex of all vertices from scale 1. It is a mean to refer to the entire
database.

296 Chapter 4. Reference

mtg Documentation, Release 2.1.2

See also:

MTG(), Complex(), Components(), Scale().

openalea.mtg.aml.NextDate(e1)
Next date at which a vertex has been observed after a specified date

Returns the first observation date at which the vertex has been observed starting at date d and proceeding forward
in time. None is returned if it does not exists.

Usage

NextDate(v, d)

Parameters

• v (int) : vertex of the active MTG.

• d (date) : departure date.

Returns date

See also:

MTG(), DateSample(), FirstDefinedFeature(), LastDefinedFeature(),
PreviousDate().

openalea.mtg.aml.Order(v1, v2=None)
Order of a vertex in a graph.

The order of a vertex (v2) with respect to another vertex (v1) is the number of edges of either type ‘+’ that must
be crossed when going from v1 to v2 in the graph. This is thus a non negative integer which corresponds to the
“botanical order”.

When the function only has one argument v1, the order of v1 correspond to the order of v1 with respect to the
root of the branching system containing v1.

Usage

Order(v1)
Order(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that one is
an ancestor of the other. When the order is relevant, use function AlgOrder().

Warning: The value returned by function Order is 0 for trunks, 1 for branches etc. This might be different
with some botanical conventions where 1 is the order of the trunk, 2 the order of branches, etc.

See also:

4.2. High level reporting function compatible with AML 297

mtg Documentation, Release 2.1.2

MTG(), Rank(), Height(), EdgeType(), AlgOrder(), AlgRank(), AlgHeight().

openalea.mtg.aml.PDir(e1, e2)

openalea.mtg.aml.Path(v1, v2)
List of vertices defining the path between two vertices

This function returns the list of vertices defining the path between two vertices that are in an ancestor relation-
ship. The vertex v1 must be an ancestor of vertex v2. Otherwise, if both vertices are valid, then the empty array
is returned and if at least one vertex is undefined, None is returned.

Usage

Path(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns list of vertices’s id (int)

Examples

>>> v # print the value of v
78
>>> Ancestors(v)
[78,45,32,10,4]
>>> Path(10,v)
[10,32,45,78]
>>> Path(9,v) # 9 is not an ancestor of 78
[]

Note: v1 can be equal to v2.

See also:

298 Chapter 4. Reference

mtg Documentation, Release 2.1.2

MTG(), Axis(), Ancestors().

openalea.mtg.aml.PlantFrame(e1)
Use openalea.mtg.plantframe.PlantFrame insteead of this function

openalea.mtg.aml.Plot(e1)

openalea.mtg.aml.Predecessor(v, **kwds)
Father of a vertex connected to it by a ‘<’ edge

This function is equivalent to Father(v, EdgeType-> ‘<’). It thus returns the father (at the same scale) of the
argument if it is located in the same botanical. If it does not exist, None is returned.

Usage

Predecessor(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

Returns return the vertex id (int)

Examples

>>> Predecessor(v)
7
>>> Father(v, EdgeType='+')
>>> Father(v, EdgeType-> '<')
7

See also:

MTG(), Father(), Successor().

openalea.mtg.aml.PreviousDate(e1)
Previous date at which a vertex has been observed after a specified date.

Returns the first observation date at which the vertex has been observed starting at date d and proceeding back-
ward in time. None is returned if it does not exists.

Usage

PreviousDate(v, d)

Parameters

• v (int) : vertex of the active MTG.

• d (date) : departure date.

Returns date

See also:

MTG(), DateSample(), FirstDefinedFeature(), LastDefinedFeature(), NextDate().

4.2. High level reporting function compatible with AML 299

mtg Documentation, Release 2.1.2

openalea.mtg.aml.Rank(v1, v2=None)
Rank of one vertex with respect to another one.

This function returns the number of consecutive ‘<’-type edges between two components, at the same scale, and
does not take into account the order of vertices v1 and v2. The result is a non negative integer.

Usage

Rank(v1)
Rank(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns int

If v1 is not an ancestor of v2 (or vise versa) within the same botanical axis, or if v1 and v2 are
not defined at the same scale, an error value Undef id returned.

See also:

MTG(), Order(), Height(), EdgeType(), AlgRank(), AlgHeight(), AlgOrder().

openalea.mtg.aml.RelBottomCoord(e1, e2)

openalea.mtg.aml.RelTopCoord(e1, e2)

openalea.mtg.aml.Root(v, RestrictedTo=’*’, ContainedIn=None)
Root of the branching system containing a vertex

This function is equivalent to Ancestors(v, EdgeType=’<’)[-1]. It thus returns the root of the branching system
containing the argument. This function never returns None.

Usage

Root(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

Returns return vertex’s id (int)

Examples

>>> Ancestors(v) # set of ancestors of v
[102,78,35,33,24,12]
>>> Root(v) # root of the branching system containing v
12

300 Chapter 4. Reference

mtg Documentation, Release 2.1.2

See also:

MTG(), Extremities().

openalea.mtg.aml.SDir(e1, e2)

openalea.mtg.aml.Scale(vid)
Scale of a vertex

Returns the scale at which is defined the argument.

Usage

>>> Scale(vid)

Parameters

• vid (int) : vertex of the active MTG

• vid (PlantFrame) : a PlantFrame object computed on the active MTG

• vid (LineTree) : a LineTree computed on a PlantFrame representing the active MTG

Returns int

See also:

MTG(), ClassScale(), Class(), Index().

openalea.mtg.aml.Sons(v, RestrictedTo=’NoRestriction’, EdgeType=’*’, Scale=-1, Con-
tainedIn=None)

Set of vertices born or preceded by a vertex

The set of sons of a given vertex is returned as an array of vertices. The order of the vertices in the array is not
significant. The array can be empty if there are no son vertices.

Usage

from openalea.mtg.aml import Sons
Sons(v)
Sons(v, EdgeType= '+')
Sons(v, Scale= 3)

4.2. High level reporting function compatible with AML 301

mtg Documentation, Release 2.1.2

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str) : cf. Father

• ContainedIn (int) : cf. Father

• EdgeType (str) : filter on the type of sons.

• Scale (int) : set the scale at which sons are considered.

Returns list(vid)

Details When the option EdgeType is applied, the function returns the set of sons that are connected
to the argument with the specified type of relation.

Note: Sons(v, EdgeType= ‘<’) is not equivalent to Successor(v). The first function returns an array of vertices
while the second function returns a vertex.

The returned vertices have the same scale as the argument. However, coarser or finer vertices can be obtained
by specifying the optional argument Scale at which the sons are considered.

Examples

>>> Sons(v)
[3,45,47,78,102]
>>> Sons(v, EdgeType= '+') # set of vertices borne by v
[3,45,47,102]
>>> Sons(v, EdgeType= '<') # set of successors of v on the same axis
[78]

See also:

MTG(), Father(), Successor(), Descendants().

openalea.mtg.aml.Successor(v, RestrictedTo=’NoRestriction’, ContainedIn=None)
Vertex that is connected to a given vertex by a ‘<’ edge type (i.e. in the same botanical axis).

This function is equivalent to Sons(v, EdgeType=’<’)[0]. It returns the vertex that is connected to a given vertex
by a ‘<’ edge type (i.e. in the same botanical axis). If many such vertices exist, an arbitrary one is returned by
the function. If no such vertex exists, None is returned.

Usage

Successor(v)

Parameters

• v1 (int) : vertex of the active MTG

Optional Parameters

• RestrictedTo (str): cf. Father

• ContainedIn (int): cf. Father

Returns Returns vertex’s id (int)

302 Chapter 4. Reference

mtg Documentation, Release 2.1.2

Examples

>>> Sons(v)
[3, 45, 47, 78, 102]
>>> Sons(v, EdgeType='+') # set of vertices borne by v
[3, 45, 47, 102]
>>> Sons(v, EdgeType-> '<') # set of successors of v
[78]
>>> Successor(v)
78

See also:

MTG(), Sons(), Predecessor().

openalea.mtg.aml.TopCoord(e1, e2)

openalea.mtg.aml.TopDiameter(e1, e2)

openalea.mtg.aml.Trunk(v, Scale=-1)
List of vertices constituting the bearing botanical axis of a branching system.

Trunk returns the list of vertices representing the botanical axis defined as the bearing axis of the whole branch-
ing system defined by v. The optional argument enables the user to choose the scale at which the trunk should
be detailed.

Usage

Trunk(v)
Trunk(v, Scale= s)

Parameters

• v (int) : Vertex of the active MTG.

Optional Parameters

• Scale (str): scale at which the axis components are required.

Returns list of vertices ids

Todo: check the usage of the optional argument Scale

See also:

MTG(), Path(), Ancestors(), Axis().

openalea.mtg.aml.VirtualPattern(e1)

openalea.mtg.aml.VtxList(Scale=-1)
Array of vertices contained in a MTG

The set of all vertices in the MTG() is returned as an array. Vertices from all scales are returned if no option is
used. The order of the elements in this array is not significant.

Usage

>>> VtxList()
>>> VtxList(Scale=2)

4.2. High level reporting function compatible with AML 303

mtg Documentation, Release 2.1.2

Optional Parameters

• Scale (int): used to select components at a particular scale.

Returns

• list of vid

Background MTGs()

See also:

MTG(), Scale(), Class(), Index().

Download the source file ../../src/mtg/aml.py.

4.3 Reading and writing MTG

4.3.1 MTG

The MTG data structure can be read/write from/to a MTG file format. The functions read_mtg() , write_mtg()
, read_mtg_file().

openalea.mtg.io.read_mtg(s, mtg=None, has_date=False)
Create an MTG from its string representation in the MTG format.

Parameter

• s (string) - a multi-lines string

Return an MTG

Example

f = open('test.mtg')
txt = f.read()

g = read_mtg(txt)

See also:

read_mtg_file().

openalea.mtg.io.read_mtg_file(fn, mtg=None, has_date=False)
Create an MTG from a filename.

Usage

>>> g = read_mtg_file('test.mtg')

See also:

read_mtg().

openalea.mtg.io.write_mtg(g, properties=[], class_at_scale=None, nb_tab=None, dis-
play_id=False)

Transform an MTG into a multi-line string in the MTG format.

This method build a generic header, then traverses the MTG and transform each vertex into a line with its label,
topoloical relationship and specific properties.

Parameters

304 Chapter 4. Reference

mtg Documentation, Release 2.1.2

• g (MTG)

• properties (list): a list of tuples associating a property name with its type. Only these
properties will be written in the out file.

Optional Parameters

• class_at_scale (dict(name->int)): a map between a class name and its scale. If class
_at_scale is None, its value will be computed from g.

• nb_tab (int): the number of tabs used to write the code.

• display_id (bool): display the id for each vertex

Returns a list of strings.

Example

Export all the properties defined in `g`.
We consider that all the properties are real numbers.

properties = [(p, 'REAL') for p in g.property_names() if p not in ['edge_type',
→˓'index', 'label']]
mtg_lines = write_mtg(g, properties)

Write the result into a file example.mtg

filename = 'example.mtg'
f = open(filename, 'w')
f.write(mtg_lines)
f.close()

4.3.2 LPy

The two functions lpy2mtg() and mtg2lpy() allow to convert the MTG data-structure into lpy and vise-versa.
It ease the communication between the two modules. Each structure are traversed and the properties are copied.
Properties can be any pyton object.

openalea.mtg.io.lpy2mtg(axial_tree, lsystem, scene=None)

openalea.mtg.io.mtg2lpy(g, lsystem, axial_tree=None)
Create an AxialTree from a MTG with scales.

Usage

tree = mtg2lpy(g,lsystem)

Parameters

• g: The mtg which have been generated by an LSystem.

• lsystem: A lsystem object containing various information. The lsystem is only used to
retrieve the context and the parameters associated with each module name.

Optional Parameters

• axial_tree: an empty axial tree. It is used to avoid complex import in the code.

Return axial tree

4.3. Reading and writing MTG 305

mtg Documentation, Release 2.1.2

See also:

mtg2axialtree()

4.3.3 AxialTree

openalea.mtg.io.axialtree2mtg(tree, scale, scene, parameters=None)
Create an MTG from an AxialTree.

Tha axial tree has been generated by LPy. It contains both modules with parameters. The geometry is provided
by the scene. The shape ids are the same that the module ids in the axial tree. For each module name in the axial
tree, a scale and a list of parameters should be defined. The scale dict allow to add a module at a given scale in
the MTG. The parameters dict map for each module name a list of parameter name that are added to the MTG.

Parameters

• tree: The axial tree generated by the L-system

• scale: A dict containing the scale for each symbol name.

• scene: The scene containing the geometry.

• parameters: list of parameter names for each module.

Return mtg

Example

tree # axial tree
scales = {}
scales['P'] = 1
scales['A'] = 2
scales['GU'] = 3

params ={}
params['P'] = []
params['A'] = ['length', 'radius']
params['GU'] = ['nb_flower']

g = axialtree2mtg(tree, scales, scene, params)

See also:

mtg2axialtree(), lpy2mtg(), mtg2lpy()

openalea.mtg.io.mtg2axialtree(g, parameters=None, axial_tree=None)
Create a MTG from an AxialTree with scales.

Parameters

• axial_tree: The axial tree managed by the L-system. Use an empty AxialTree if you do not
want to concatenate this axial_tree with previous results.

• parameters: list of parameter names for each module.

Return mtg

Example

params = dict()
params ['P'] = []
params['A'] = ['length', radius']

(continues on next page)

306 Chapter 4. Reference

mtg Documentation, Release 2.1.2

(continued from previous page)

params['GU']=['nb_flower']
tree = mtg2axialtree(g, params)

See also:

axialtree2mtg(), mtg2lpy()

4.3.4 Cpfg

openalea.mtg.io.read_lsystem_string(string, symbol_at_scale, functional_symbol={},
mtg=None)

Read a string generated by a lsystem.

Parameters

• string: The lsystem string representing the axial tree.

• symbol_at_scale: A dict containing the scale for each symbol name.

Optional parameters

• functional_symbol: A dict containing a function for specific symbols. The args of the function have to
be coherent with those in the string. The return type of the functions have to be a dictionary of
properties: dict(name, value)

Return MTG object

4.3.5 Mss

openalea.mtg.io.mtg2mss(name, mtg, scene, envelop_type=’CvxHull’)
Convert an MTG into the multi-scale structure implemented by fractalysis.

Parameters

• name: name of the structure

• mtg: the mtg to convert

• scene: the scene containing the geometry

• envelop_type: algorithm used to fit the geometry.between scales.

Returns mss data structure.

Download the source file ../../src/mtg/io.py.

4.4 Traversal methods on tree and MTG

Tree and MTG Traversals

class openalea.mtg.traversal.Visitor
Bases: object

Used during a tree traversal.

post_order(vtx_id)

4.4. Traversal methods on tree and MTG 307

https://docs.python.org/3.4/library/functions.html#object

mtg Documentation, Release 2.1.2

pre_order(vtx_id)

openalea.mtg.traversal.iter_mtg(mtg, vtx_id)
Iterate on an MTG by traversiong vtx_id and all its components.

This function traverse a complex before its components and a parent before its children.

Usage

for vid in iter_mtg(g,g.root):
print vid

Parameters

• mtg: the multi-scale graph

• vtx_id: the root of the sub-mtg which is traversed.

Returns iter of vid.

Traverse all the vertices contained in the sub_mtg defined by vtx_id.

See also:

iter_mtg2(), iter_mtg_with_filter(), iter_mtg2_with_filter().

Note: Do not use this function. Use iter_mtg2() instead. If several trees belong to vtx_id, only the first
one will be traversed.

Note: This is a recursive implementation. It can be problematic for large MTG with lots of scales (e.g. >40).

openalea.mtg.traversal.iter_mtg2(mtg, vtx_id)
Iterate on an MTG by traversiong vtx_id and all its components.

This function traverse a complex before its components and a parent before its children.

Usage

for vid in iter_mtg2(g,g.root):
print vid

Parameters

• mtg: the multi-scale graph

• vtx_id: the root of the sub-mtg which is traversed.

Returns iter of vid.

Traverse all the vertices contained in the sub_mtg defined by vtx_id.

See also:

iter_mtg(), iter_mtg_with_filter(), iter_mtg2_with_filter()

Note: Use this function instead of iter_mtg()

308 Chapter 4. Reference

mtg Documentation, Release 2.1.2

openalea.mtg.traversal.iter_mtg2_with_filter(mtg, vtx_id, pre_order_filter=None,
post_order_visitor=None)

Iterate on an MTG by traversiong vtx_id and all its components.

If defined, apply the two visitor functions before and after having visited all the successor of a vertex.

This function traverse a complex before its components and a parent before its children.

Usage

def pre_order_visitor(vid):
print vid
return True

def post_order_visitor(vid):
print vid

for vid in iter_mtg_with_filter(g,g.root, pre_order_visitor, post_order_visitor):
pass

Parameters

• mtg: the multi-scale graph

• vtx_id: the root of the sub-mtg which is traversed.

Optional Parameters

• pre_order_visitor: function called before traversing the children or components. This
function returns a boolean. If False, the sub-mtg rooted on the vertex is skipped.

• post_order_visitor : function called after the traversal of all the children and components.

Returns iter of vid.

Traverse all the vertices contained in the sub_mtg defined by vtx_id.

See also:

iter_mtg(), iter_mtg2(), iter_mtg2_with_filter()

Note: Use this function instead of iter_mtg_with_filter()

openalea.mtg.traversal.iter_mtg_with_filter(mtg, vtx_id, pre_order_filter=None,
post_order_visitor=None)

Iterate on an MTG by traversiong vtx_id and all its components.

If defined, apply the two visitor functions before and after having visited all the successor of a vertex.

This function traverse a complex before its components and a parent before its children.

Usage

def pre_order_visitor(vid):
print vid
return True

def post_order_visitor(vid):
print vid

for vid in iter_mtg_with_filter(g,g.root, pre_order_visitor, post_order_visitor):
pass

Parameters

4.4. Traversal methods on tree and MTG 309

mtg Documentation, Release 2.1.2

• mtg: the multi-scale graph

• vtx_id: the root of the sub-mtg which is traversed.

Optional Parameters

• pre_order_visitor: function called before traversing the children or components. This
function returns a boolean. If False, the sub-mtg rooted on the vertex is skipped.

• post_order_visitor : function called after the traversal of all the children and components.

Returns iter of vid.

Traverse all the vertices contained in the sub_mtg defined by vtx_id.

See also:

iter_mtg(), iter_mtg2(), iter_mtg2_with_filter()

Note: Do not use this function. Instead use iter_mtg2_with_filter()

openalea.mtg.traversal.iter_scale(g, vtx_id, visited)
Internal method used by iter_mtg() and iter_mtg_with_visitor().

Warning: Do not use. This function may be removed in other version.

openalea.mtg.traversal.iter_scale2(g, vtx_id, complex_id, visited)
Internal method used by iter_mtg() and iter_mtg_with_visitor().

Warning: Do not use. This function may be removed in other version.

openalea.mtg.traversal.post_order(tree, vtx_id, complex=None, visitor_filter=None)
Traverse a tree in a postfix way. (from leaves to root) This is a recursive implementation

openalea.mtg.traversal.post_order2(tree, vtx_id, complex=None, pre_order_filter=None,
post_order_visitor=None)

Traverse a tree in a postfix way. (from leaves to root)

Same algorithm than post_order. The goal is to replace the post_order implementation.

openalea.mtg.traversal.pre_order(tree, vtx_id, complex=None, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)

This is a non recursive implementation.

openalea.mtg.traversal.pre_order2(tree, vtx_id, complex=None, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)

This is an iterative implementation.

openalea.mtg.traversal.pre_order2_with_filter(tree, vtx_id, complex=None,
pre_order_filter=None,
post_order_visitor=None)

Same algorithm than pre_order2. The goal is to replace the pre_order2 implementation.

The problem is for the pre_order filter when it is also a visitor

310 Chapter 4. Reference

mtg Documentation, Release 2.1.2

openalea.mtg.traversal.pre_order_in_scale(tree, vtx_id, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)

This is a non recursive implementation.

openalea.mtg.traversal.pre_order_with_filter(tree, vtx_id, pre_order_filter=None,
post_order_visitor=None)

Traverse a tree in a prefix way. (root then children)

This is an iterative implementation.

TODO: make the naming and the arguments more consistent and user friendly. pre_order_filter is a functor
which has to return a boolean. If the return value is False, the vertex is not visited. Otherelse, some computation
can be done.

The post_order_visitor is used to execute, store, compute a function when the tree rooted on the vertex has been
visited.

openalea.mtg.traversal.topological_sort(g, vtx_id, visited=None)
Topological sort of a directed acyclic graph.

This is not a fully recursive implementation.

openalea.mtg.traversal.traverse_tree(tree, vtx_id, visitor)
Traverse a tree in a prefix or postfix way.

We call a visitor for each vertex. This is usefull for printing, computing or storing vertices in a specific order.

See boost.graph.

Download the source file ../../src/mtg/traversal.py.

4.5 Common algorithms

Implementation of a set of algorithms for the MTG datastructure

openalea.mtg.algo.alg_height(g, v1, v2=None)

openalea.mtg.algo.alg_order(g, v1, v2=None)

openalea.mtg.algo.alg_rank(g, v1, v2=None)

openalea.mtg.algo.ancestors(g, vid, **kwds)
Return the vertices from vid to the root.

Parameters

• g: a tree or an MTG

• vid: a vertex id which belongs to g

Returns an iterator from vid to the root of the tree.

openalea.mtg.algo.axis(g, vtx_id, scale=-1, **kwds)
TODO: see aml doc

openalea.mtg.algo.descendants(g, vtx_id, scale=-1, **kwds)
TODO: see aml doc

openalea.mtg.algo.edge_type(g, v)

openalea.mtg.algo.extremities(g, vid, **kwds)
TODO see aml doc Implement the method more efficiently. . .

4.5. Common algorithms 311

mtg Documentation, Release 2.1.2

openalea.mtg.algo.father(g, vid, scale=-1, **kwds)
See aml.Father function.

openalea.mtg.algo.full_ancestors(g, v1, **kwds)
Return the vertices from v1 to the root.

openalea.mtg.algo.height(g, v1, v2=None)

openalea.mtg.algo.heights(g, scale=-1)
Compute the order of all vertices at scale scale.

If scale == -1, the compute the order for vertices at the finer scale.

openalea.mtg.algo.local_axis(g, vtx_id, scale=-1, **kwds)
Return a sequence of vertices connected by ‘<’ edges. The first element of the sequence is vtx_id.

openalea.mtg.algo.location(g, vid, **kwds)
TODO: see doc aml.Location.

openalea.mtg.algo.lookForCommonAncestor(g, commonAncestors, currentNode)

openalea.mtg.algo.lowestCommonAncestor(g, nodes)
LCA algorithm

openalea.mtg.algo.order(g, v1, v2=None)

openalea.mtg.algo.orders(g, scale=-1)
Compute the order of all vertices at scale scale.

If scale == -1, the compute the order for vertices at the finer scale.

openalea.mtg.algo.path(g, vid1, vid2=None)
Compute the vertices between v1 and v2. If v2 is None, return the path between v1 and the root. Otherelse,
return the path between v1 and v2. If the graph is oriented from v1 to v2, sign is positive. Else, sign is negative.

openalea.mtg.algo.predecessor(g, vid, **kwds)

openalea.mtg.algo.rank(g, v1, v2=None)

openalea.mtg.algo.root(g, vid, RestrictedTo=’NoRestriction’, ContainedIn=None)
TODO: see aml.Root doc string.

openalea.mtg.algo.sons(g, vid, **kwds)
TODO: see doc aml.sons.

openalea.mtg.algo.split(g, scale=1)
Split at scale.

openalea.mtg.algo.successor(g, vid, **kwds)
TODO: see aml.Successor doc string.

openalea.mtg.algo.topological_path(g, v1, v2=None, edge=None)

openalea.mtg.algo.trunk(g, vtx_id, scale=-1, **kwds)

openalea.mtg.algo.union(g1, g2, vid1=None, vid2=None, edge_type=’<’)
Return the union of the MTGs g1 and g2.

Parameters

• g1, g2 (MTG) : An MTG graph

• vid1 : the anchor vertex identid=fier that belong to g1

• vid2 : the root of the sub_mtg that belong to g2 which will be added to g1.

• edge_type (str) : the type of the edge which will connect vid1 to vid2

312 Chapter 4. Reference

mtg Documentation, Release 2.1.2

openalea.mtg.algo.vertex_at_scale(g, vtx_id, scale)

Download the source file ../../src/mtg/algo.py.

4.6 Graphical representation of MTG

4.6.1 PlantFrame

openalea.mtg.PlantFrame

4.6.2 DressingData

4.6.3 3D Plot

Plot a PlantFrame.

Download the source files ../../src/mtg/plantframe/plantframe.py, ../../src/mtg/
plantframe/dresser.py, ../../src/mtg/plantframe/turtle.py,

4.7 utilities (plots)

Different utilities such as plot2D, plot3D, and so on. . .

openalea.mtg.util.mtg_plot(g, scales=1)

openalea.mtg.util.plot2d(g, image_name, scale=None, orientation=90)
Compute an image of the tree via graphviz.

Parameters

• g (int) : an MTG object

• image_name (str) : output filename e.g. test.png

Optional parameters

• scale (int): represents the MTG’s scale to look at (default max)

• orientation (int): orientation angle (default 90)

openalea.mtg.util.plot3d(g, scale=None)

Compute a 3d view of the MTG in a simple way:

• sphere for the nodes and thin cylinder for the edges.

openalea.mtg.util.plot_nx(g, *args, **kwds)

Download the source file ../../src/mtg/util.py.

4.6. Graphical representation of MTG 313

mtg Documentation, Release 2.1.2

314 Chapter 4. Reference

CHAPTER 5

Credits

5.1 Lead Developer

• Christophe Pradal, <christophe pradal __at__ cirad fr>

5.2 Contributors

• Christophe Godin, <christophe godin __at__ inria fr> (Concepts, Design, Previous implementation, Documen-
tation)

• Thomas Cokelaer <thomas cokelaer __at__ isp fr> (Docmentation)

315

mtg Documentation, Release 2.1.2

316 Chapter 5. Credits

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

317

mtg Documentation, Release 2.1.2

318 Chapter 6. Indices and tables

Python Module Index

o
openalea.mtg.algo, 311
openalea.mtg.aml, 281
openalea.mtg.traversal, 307
openalea.mtg.util, 313

319

mtg Documentation, Release 2.1.2

320 Python Module Index

Index

A
Activate() (in module openalea.mtg.aml), 281
Active() (in module openalea.mtg.aml), 281
add_child() (openalea.mtg.mtg.MTG method), 267
add_child_and_complex() (ope-

nalea.mtg.mtg.MTG method), 267
add_child_tree() (openalea.mtg.mtg.MTG

method), 267
add_component() (openalea.mtg.mtg.MTG method),

267
add_element() (openalea.mtg.mtg.MTG method),

267
add_property() (openalea.mtg.mtg.MTG method),

268
alg_height() (in module openalea.mtg.algo), 311
alg_order() (in module openalea.mtg.algo), 311
alg_rank() (in module openalea.mtg.algo), 311
AlgHeight() (in module openalea.mtg.aml), 282
AlgHeight() (openalea.mtg.mtg.MTG method), 251
AlgOrder() (in module openalea.mtg.aml), 282
AlgOrder() (openalea.mtg.mtg.MTG method), 251
AlgRank() (in module openalea.mtg.aml), 282
AlgRank() (openalea.mtg.mtg.MTG method), 252
Alpha() (in module openalea.mtg.aml), 283
ancestors() (in module openalea.mtg.algo), 311
Ancestors() (in module openalea.mtg.aml), 283
Ancestors() (openalea.mtg.mtg.MTG method), 252
axialtree2mtg() (in module openalea.mtg.io), 306
axis() (in module openalea.mtg.algo), 311
Axis() (in module openalea.mtg.aml), 284
Axis() (openalea.mtg.mtg.MTG method), 253

B
backward_rewriting_traversal() (ope-

nalea.mtg.mtg.MTG method), 268
Beta() (in module openalea.mtg.aml), 284
BottomCoord() (in module openalea.mtg.aml), 284
BottomDiameter() (in module openalea.mtg.aml),

284

C
children() (openalea.mtg.mtg.MTG method), 268
children_iter() (openalea.mtg.mtg.MTG method),

268
Class() (in module openalea.mtg.aml), 284
Class() (openalea.mtg.mtg.MTG method), 254
class_name() (openalea.mtg.mtg.MTG method), 268
ClassScale() (in module openalea.mtg.aml), 285
ClassScale() (openalea.mtg.mtg.MTG method), 254
clear() (openalea.mtg.mtg.MTG method), 268
clear_properties() (openalea.mtg.mtg.MTG

method), 269
colored_tree() (in module openalea.mtg.mtg), 280
Complex() (in module openalea.mtg.aml), 285
Complex() (openalea.mtg.mtg.MTG method), 255
complex() (openalea.mtg.mtg.MTG method), 269
complex_at_scale() (openalea.mtg.mtg.MTG

method), 269
component_roots() (openalea.mtg.mtg.MTG

method), 269
component_roots_at_scale() (ope-

nalea.mtg.mtg.MTG method), 269
component_roots_at_scale_iter() (ope-

nalea.mtg.mtg.MTG method), 269
component_roots_iter() (ope-

nalea.mtg.mtg.MTG method), 269
ComponentRoots() (in module openalea.mtg.aml),

286
ComponentRoots() (openalea.mtg.mtg.MTG

method), 255
Components() (in module openalea.mtg.aml), 287
Components() (openalea.mtg.mtg.MTG method), 256
components() (openalea.mtg.mtg.MTG method), 269
components_at_scale() (openalea.mtg.mtg.MTG

method), 269
components_at_scale_iter() (ope-

nalea.mtg.mtg.MTG method), 269
components_iter() (openalea.mtg.mtg.MTG

method), 270

321

mtg Documentation, Release 2.1.2

Coord() (in module openalea.mtg.aml), 288
copy() (openalea.mtg.mtg.MTG method), 270

D
DateSample() (in module openalea.mtg.aml), 288
Defined() (in module openalea.mtg.aml), 288
Defined() (openalea.mtg.mtg.MTG method), 257
descendants() (in module openalea.mtg.algo), 311
Descendants() (in module openalea.mtg.aml), 289
Descendants() (openalea.mtg.mtg.MTG method),

257
display() (openalea.mtg.mtg.MTG method), 270
display_mtg() (in module openalea.mtg.mtg), 281
display_tree() (in module openalea.mtg.mtg), 280
DressingData() (in module openalea.mtg.aml), 290

E
edge_type() (in module openalea.mtg.algo), 311
edge_type() (openalea.mtg.mtg.MTG method), 270
edges() (openalea.mtg.mtg.MTG method), 270
EdgeType() (in module openalea.mtg.aml), 290
EdgeType() (openalea.mtg.mtg.MTG method), 258
extremities() (in module openalea.mtg.algo), 311
Extremities() (in module openalea.mtg.aml), 291
Extremities() (openalea.mtg.mtg.MTG method),

259

F
father() (in module openalea.mtg.algo), 311
Father() (in module openalea.mtg.aml), 291
Father() (openalea.mtg.mtg.MTG method), 260
Feature() (in module openalea.mtg.aml), 292
FirstDefinedFeature() (in module ope-

nalea.mtg.aml), 293
forward_rewriting_traversal() (ope-

nalea.mtg.mtg.MTG method), 270
full_ancestors() (in module openalea.mtg.algo),

312

G
get_root() (openalea.mtg.mtg.MTG method), 270
get_vertex_property() (openalea.mtg.mtg.MTG

method), 270
graph_properties() (openalea.mtg.mtg.MTG

method), 270

H
has_vertex() (openalea.mtg.mtg.MTG method), 270
height() (in module openalea.mtg.algo), 312
Height() (in module openalea.mtg.aml), 293
Height() (openalea.mtg.mtg.MTG method), 260
heights() (in module openalea.mtg.algo), 312

I
Index() (in module openalea.mtg.aml), 294
Index() (openalea.mtg.mtg.MTG method), 261
index() (openalea.mtg.mtg.MTG method), 271
insert_parent() (openalea.mtg.mtg.MTG method),

271
insert_scale() (openalea.mtg.mtg.MTG method),

271
insert_sibling() (openalea.mtg.mtg.MTG

method), 271
insert_sibling_tree() (openalea.mtg.mtg.MTG

method), 271
is_leaf() (openalea.mtg.mtg.MTG method), 272
is_valid() (openalea.mtg.mtg.MTG method), 272
iter_edges() (openalea.mtg.mtg.MTG method), 272
iter_mtg() (in module openalea.mtg.traversal), 308
iter_mtg2() (in module openalea.mtg.traversal), 308
iter_mtg2_with_filter() (in module ope-

nalea.mtg.traversal), 308
iter_mtg_with_filter() (in module ope-

nalea.mtg.traversal), 309
iter_scale() (in module openalea.mtg.traversal),

310
iter_scale2() (in module openalea.mtg.traversal),

310
iteredges() (openalea.mtg.mtg.MTG method), 272

L
Label() (in module openalea.mtg.aml), 294
Label() (openalea.mtg.mtg.MTG method), 261
label() (openalea.mtg.mtg.MTG method), 272
LastDefinedFeature() (in module ope-

nalea.mtg.aml), 295
Length() (in module openalea.mtg.aml), 295
local_axis() (in module openalea.mtg.algo), 312
location() (in module openalea.mtg.algo), 312
Location() (in module openalea.mtg.aml), 295
lookForCommonAncestor() (in module ope-

nalea.mtg.algo), 312
lowestCommonAncestor() (in module ope-

nalea.mtg.algo), 312
lpy2mtg() (in module openalea.mtg.io), 305

M
max_scale() (openalea.mtg.mtg.MTG method), 272
MTG (class in openalea.mtg.mtg), 250
MTG() (in module openalea.mtg.aml), 296
MTG() (in module openalea.mtg.mtg), 249
mtg2axialtree() (in module openalea.mtg.io), 306
mtg2lpy() (in module openalea.mtg.io), 305
mtg2mss() (in module openalea.mtg.io), 307
mtg_plot() (in module openalea.mtg.util), 313
MTGRoot() (in module openalea.mtg.aml), 296

322 Index

mtg Documentation, Release 2.1.2

N
nb_children() (openalea.mtg.mtg.MTG method),

273
nb_components() (openalea.mtg.mtg.MTG method),

273
nb_scales() (openalea.mtg.mtg.MTG method), 273
nb_siblings() (openalea.mtg.mtg.MTG method),

273
nb_vertices() (openalea.mtg.mtg.MTG method),

273
NextDate() (in module openalea.mtg.aml), 297
node() (openalea.mtg.mtg.MTG method), 273

O
openalea.mtg.algo (module), 311
openalea.mtg.aml (module), 281
openalea.mtg.traversal (module), 307
openalea.mtg.util (module), 313
order() (in module openalea.mtg.algo), 312
Order() (in module openalea.mtg.aml), 297
order() (openalea.mtg.mtg.MTG method), 274
orders() (in module openalea.mtg.algo), 312

P
parent() (openalea.mtg.mtg.MTG method), 274
path() (in module openalea.mtg.algo), 312
Path() (in module openalea.mtg.aml), 298
Path() (openalea.mtg.mtg.MTG method), 261
PDir() (in module openalea.mtg.aml), 298
PlantFrame (in module openalea.mtg), 313
PlantFrame() (in module openalea.mtg.aml), 299
Plot() (in module openalea.mtg.aml), 299
plot2d() (in module openalea.mtg.util), 313
plot3d() (in module openalea.mtg.util), 313
plot_nx() (in module openalea.mtg.util), 313
plot_property() (openalea.mtg.mtg.MTG method),

274
post_order() (in module openalea.mtg.traversal),

310
post_order() (openalea.mtg.traversal.Visitor

method), 307
post_order2() (in module openalea.mtg.traversal),

310
pre_order() (in module openalea.mtg.traversal), 310
pre_order() (openalea.mtg.traversal.Visitor

method), 307
pre_order2() (in module openalea.mtg.traversal),

310
pre_order2_with_filter() (in module ope-

nalea.mtg.traversal), 310
pre_order_in_scale() (in module ope-

nalea.mtg.traversal), 310
pre_order_with_filter() (in module ope-

nalea.mtg.traversal), 311

predecessor() (in module openalea.mtg.algo), 312
Predecessor() (in module openalea.mtg.aml), 299
Predecessor() (openalea.mtg.mtg.MTG method),

262
PreviousDate() (in module openalea.mtg.aml), 299
properties() (openalea.mtg.mtg.MTG method), 274
property() (openalea.mtg.mtg.MTG method), 274
property_names() (openalea.mtg.mtg.MTG

method), 274
property_names_iter() (openalea.mtg.mtg.MTG

method), 274

R
random_mtg() (in module openalea.mtg.mtg), 280
random_tree() (in module openalea.mtg.mtg), 279
rank() (in module openalea.mtg.algo), 312
Rank() (in module openalea.mtg.aml), 299
Rank() (openalea.mtg.mtg.MTG method), 263
read_lsystem_string() (in module ope-

nalea.mtg.io), 307
read_mtg() (in module openalea.mtg.io), 304
read_mtg_file() (in module openalea.mtg.io), 304
reindex() (openalea.mtg.mtg.MTG method), 274
RelBottomCoord() (in module openalea.mtg.aml),

300
RelTopCoord() (in module openalea.mtg.aml), 300
remove_property() (openalea.mtg.mtg.MTG

method), 275
remove_scale() (openalea.mtg.mtg.MTG method),

275
remove_tree() (openalea.mtg.mtg.MTG method),

275
remove_vertex() (openalea.mtg.mtg.MTG method),

275
replace_parent() (openalea.mtg.mtg.MTG

method), 275
root (openalea.mtg.mtg.MTG attribute), 279
root() (in module openalea.mtg.algo), 312
Root() (in module openalea.mtg.aml), 300
Root() (openalea.mtg.mtg.MTG method), 263
roots() (openalea.mtg.mtg.MTG method), 275
roots_iter() (openalea.mtg.mtg.MTG method), 276

S
Scale() (in module openalea.mtg.aml), 301
Scale() (openalea.mtg.mtg.MTG method), 264
scale() (openalea.mtg.mtg.MTG method), 276
scales() (openalea.mtg.mtg.MTG method), 277
scales_iter() (openalea.mtg.mtg.MTG method),

277
SDir() (in module openalea.mtg.aml), 301
set_root() (openalea.mtg.mtg.MTG method), 277
siblings() (openalea.mtg.mtg.MTG method), 277

Index 323

mtg Documentation, Release 2.1.2

siblings_iter() (openalea.mtg.mtg.MTG method),
277

simple_tree() (in module openalea.mtg.mtg), 279
sons() (in module openalea.mtg.algo), 312
Sons() (in module openalea.mtg.aml), 301
Sons() (openalea.mtg.mtg.MTG method), 264
split() (in module openalea.mtg.algo), 312
sub_mtg() (openalea.mtg.mtg.MTG method), 277
sub_tree() (openalea.mtg.mtg.MTG method), 278
successor() (in module openalea.mtg.algo), 312
Successor() (in module openalea.mtg.aml), 302
Successor() (openalea.mtg.mtg.MTG method), 265

T
TopCoord() (in module openalea.mtg.aml), 303
TopDiameter() (in module openalea.mtg.aml), 303
topological_path() (in module ope-

nalea.mtg.algo), 312
topological_sort() (in module ope-

nalea.mtg.traversal), 311
traverse_tree() (in module ope-

nalea.mtg.traversal), 311
trunk() (in module openalea.mtg.algo), 312
Trunk() (in module openalea.mtg.aml), 303
Trunk() (openalea.mtg.mtg.MTG method), 266

U
union() (in module openalea.mtg.algo), 312

V
vertex_at_scale() (in module openalea.mtg.algo),

312
vertices() (openalea.mtg.mtg.MTG method), 278
vertices_iter() (openalea.mtg.mtg.MTG method),

278
VirtualPattern() (in module openalea.mtg.aml),

303
Visitor (class in openalea.mtg.traversal), 307
VtxList() (in module openalea.mtg.aml), 303
VtxList() (openalea.mtg.mtg.MTG method), 266

W
write_mtg() (in module openalea.mtg.io), 304

324 Index

	Install
	Use
	MTG User Guide
	Quick Start to manipulate MTGs
	The openalea.mtg.aml module: Long Tour
	MTG file
	Illustration: exploring an apple tree orchard
	Tutorial: Create MTG file from scratch
	PlantFrame (3D reconstruction of plant architecture)
	Using MTG within VisuAlea
	File syntax
	Lsystem and MTGs
	Bibliography
	Classes and Interfaces
	Algorithms

	Reference
	MTG - Multi-scale Tree Graph
	High level reporting function compatible with AML
	Reading and writing MTG
	Traversal methods on tree and MTG
	Common algorithms
	Graphical representation of MTG
	utilities (plots)

	Credits
	Lead Developer
	Contributors

	Indices and tables
	Python Module Index
	Index

