mtg Documentation

Release 2.1.2

Christophe Pradal

Apr 20, 2022

Contents

1	Install	3	
2	Use	5	
3	MTG User Guide3.1Quick Start to manipulate MTGs3.2The openalea.mtg.aml module: Long Tour3.3MTG file3.4Illustration: exploring an apple tree orchard3.5Tutorial: Create MTG file from scratch3.6PlantFrame (3D reconstruction of plant architecture)3.7Using MTG within VisuAlea3.8File syntax3.9Lsystem and MTGs3.10Bibliography3.11Classes and Interfaces3.12Algorithms	119 139 141 235 247 247	
4	Reference4.1MTG - Multi-scale Tree Graph4.2High level reporting function compatible with AML4.3Reading and writing MTG4.4Traversal methods on tree and MTG4.5Common algorithms4.6Graphical representation of MTG4.7utilities (plots)	281 304 307 311 313	
5	Credits 5.1 Lead Developer 5.2 Contributors		
6	Indices and tables	317	
Ру	thon Module Index	319	
In	Index		

Contents:

CHAPTER **1**

Install

Use conda to install openalea.mtg:

conda install openalea.mtg -c openalea

CHAPTER 2

Use

Simple usage:

from openalea.mtg import *

CHAPTER 3

MTG User Guide

Summary		
Version 2.1.2		
Release 2.1.2		
Date Apr 20, 2022		
Provides MTG or <i>Multiscale Tree Graph</i> data structure.		

In order to quickly learn how to read a MTG file and plot it with PlantGL, jump to the the *Quick Start to manipulate MTGs*. If you are in a hurry and want to parse the MTG to retrieve information about it, look at the *The openalea.mtg.aml module: Long Tour* that fully describes the *openalea.mtg.aml* module.

Then, we advice you to look at the section *MTG file* to understand what is a MTG file through a detailled description of the format and a few examples (note that the section *File syntax* gives a full description of the format). The section *Illustration: exploring an apple tree orchard* explains through a full example what can be done with the MTG data in point of view of statistical analysis.

Finally, once the MTG format is understood, you may want to create your own MTG file from scratch as described in Section *Tutorial: Create MTG file from scratch*.

Note: The full guide reference is also available *Reference*.

3.1 Quick Start to manipulate MTGs

3.1.1 Reading an MTG file and activate it

A plant architecture described in a coding file can be loaded in openalea.mtg.aml as follows:

```
>>> from openalea.mtg.aml import MTG
>>> g1 = MTG('user/agraf.mtg')  # some errors may occur while loading the MTG
ERROR: Missing component for vertex 2532
```

Note: In order to reproduce the example, download agraf MTG file and the agraf DRF file. Other files that may be required are also available in the same directory (**smb* files) but are not compulsary.

The MTG function attempts to read a valid MTG description and parses the coding file. If errors are detected during the parsing, they are displayed on the screen and the parsing fails. In this case, no MTG is built and the user should make corrections to the coding file. If the parsing succeeds, this function creates an internal representation of the plant (or a set of plants) encoded as a MTG. In this example, the MTG object is stored in variable *g1* for further use. Note that a MTG should always be stored in a variable otherwise it is destroyed immediately after its building. The last built MTG is considered as the "active" MTG. It is used as an implicit argument by all the functions of the MTG module.

It is possible to change the active MTG using Activate()

```
g1 = MTG("filename1") # g1 is the current MTG
g2 = MTG("filename2") # g2 becomes the current MTG
Activate(g1) # g1 is now again the current MTG
```

Warning: the notion of activation is very important. Each call to a function in the package MTG will look at the active MTG.

3.1.2 Plotting

Warning: PlantFrame is still in development and not all MTG files can be plotted with the current code, especially the files that have no information about positions

The following examples shows how to plot the contents of a MTG given that a dressing data file (DRF) is available. See the *File syntax* section for more information about the MTG and DRF syntax. Note that the following code should be simplified in the future.

```
from openalea.mtg.aml import MTG
1
   from openalea.mtg.dresser import dressing_data_from_file
2
   from openalea.mtg.plantframe import PlantFrame, compute_axes, build_scene
3
4
   g = MTG('agraf.mtg')
5
   dressing_data = dressing_data_from_file('agraf.drf')
   topdia = lambda x: g.property('TopDia').get(x)
6
   pf = PlantFrame(g, TopDiameter=topdia,
7
                                              DressingData = dressing_data)
   axes = compute_axes(g, 3, pf.points, pf.origin)
8
   diameters = pf.algo_diameter()
9
   scene = build_scene(pf.g, pf.origin, axes, pf.points, diameters, 10000)
10
11
   from vplants.plantgl.all import Viewer
   Viewer.display(scene)
12
```

3.1.3 Functions related to MTGs

There exists a comprehensive set of functions related to MTGs. These functions may be directly used on the active MTG or they may be combined with each other in order to define new functions on MTGs. Here are some of them.

Fig. 1: Figure 3.5 An apple tree plotted with the python script shown above

Full details may be found elsewhere either in the tutorials (e.g., *The openalea.mtg.aml module: Long Tour*) or in the *Reference* section.

- MTG constructor. We've already seen how to read a MTG file by using *MTG()*, which takes one mandatory argument, namely the MTG's filename.
- Extraction of vertex sets: e.g. VtxList(). Different types of lists of vertices can be extracted from a MTG through the function *VtxList()*. Notably, the set of functions at a given scale is obtained with the optional argument Scale:

```
1 from openalea.mtg.aml import VtxList
2 VtxList()
3 vtx1 = VtxList(Scale=1) # vtx 1 returns a list e.g., [1]
4 vtx2 = VtxList(Scale=2)
5 vtx3 = VtxList(Scale=3)
```

On line 2, we extract the vertices that have scale set to 1. The returned list contains only 1 element that have the index 1. Conversely, we could use the *Scale()* function to figure out what is the Scale of the vertex that have the index 1:

```
>>> from openalea.mtg.aml import Scale
>>> Scale(1)
1
```

• Functions returning vertex attributes: e.g. Class(vtx), Index(vtx), Feature(vtx, feature_name). The different attributes attached to a given vertex can be retrieved by these functions. The class and the index of a vertex are respectively returned by functions *Class()* and *Index()*. The value of any other attribute may be obtained by specifying its name:

```
>>> from openalea.mtg.aml import Feature, Class, Index
>>> vtxList = VtxList(Scale=2)  # get a list of vertices according to a scale
>>> v1 = vtxList[0]  # look at the first vertex
>>> # Feature(vertex_id, name)
```

(continues on next page)

(continued from previous page)

```
>>> Feature(v1, "XX")
0.0
>>> Class(v1)
'U'
>>> Index(v1)
94
```

Returns the attribute "XX" (if any) of a vertex v1. These functions return scalar (INTEGER, STRING, REAL), i.e. elementary types different from VTX.

• Functions for moving in MTGs: e.g. Father(vtx), Complex(vtx), Successor(vtx), Predecessor(vtx). Some functions take a VTX as an argument and return a VTX. These functions allow topological moves in the MTG, i.e. they allow to select new vertices with topological reference to given vertices. See *Father()*, *Predecessor()*, *Successor()*, and *Complex()*

```
>>> from openalea.mtg.aml import Father, Successor, Predecessor
>>> Father(v1)
>>> Predecessor(v1)
```

Note: The predecessor is a special case of Father; predecessor function is equivalent to Father(v, EdgeType-> '<'). It thus returns the father (at the same scale) of the argument

- Functions for creating collections of vertices: e.g. Sons(vtx), Components(vtx), Axix(vtx). These functions return sets of vertices associated with a certain vertex. Components() returns all the vertices that compose at the scale immediately superior a given vertex. Axis() returns the ordered set of vertices which compose the axis which the argument belongs to.
- Functions for creating graphical representations of MTGs: PlantFrame(), Plot(), DressingData Plant-Frame() enables the user to compute 3D-geometrical representations of MTGs.

The above functions can be combined together using the Python language to extract from plant databases various types of information.

documentation status:

Documentation adapted from the AMAPmod user manual version 1.8 Dec 2009.

Documentation to be revised

3.2 The openalea.mtg.aml module: Long Tour

3.2.1 Reading the file

This page illustrates the usage of all the functionalities available in *openalea.mtg.aml* module. All the examples uses the MTG file code_file2.mtg. If you are interested in the syntax, we stronly recommend you to look at Section *MTG file*.

First, let us read the MTG file with the function MTG(). Note that only one MTG object can be manipulated at a time. This MTG object is the **active** MTG.

a) tree graph at internode scale b) multiscale tree graph (MTG)

Fig. 2: Figure 1: Graphical representation of the MTG file code_file2.mtg used as an input file to all examples contained in this page

```
>>> from openalea.mtg.aml import *
>>> g = MTG('user/code_file2.mtg')
>>> Active() == g
True
```

The Active() function checks that g is currently the active MTG.

If a new MTG file is read, it becomes the new active MTG object. However, the function Activate() can be use to switch between MTG objects as follows:

```
>>> h = MTG('user/agraf.mtg')
>>> Active() == h
True
>>> Activate(g)
```

```
>>> MTGRoot()
0
```

3.2.2 Feature functions

Order, Rank and Height

Order() (AlgOrder()) look at the number of + sign that need to be crossed before reaching the vertex considered

```
>>> Order(3)
0
>>> Order(14)
1
>>> AlgOrder(3,14)
1
```

Height () (AlgHeight ()) look at the number of components between the root of the vertex's branch and the vertex's position.

```
>>> Height(3)
0
>>> Height(14)
10
>>> AlgHeight(3, 14)
10
```

Rank () (AlgRank ()) returns the number < sign that need to be crosssed before reaching the vertex considered.

```
>>> Rank(3)
0
>>> Rank(14)
4
>>> AlgRank(3, 14)
5
```

Class(), Index(), Label(), Feature()

Class () gives the type of vertex usually defined by a letter

>>> Class(3) 'I'

and Index() gives the other part of the label

>>> Index(3)

When speaking about multiscale tree graph, we also want to access the Scale():

```
>>> Scale(3)
3
```

A new function called Label () combines the Class and Index:

```
>>> Label(3)
'I1'
```

Finally, Feature () returns value of a given feature coded in the MTG file.

```
>>> Feature(2, "Len")
10.0
```

ClassScale(), EdgeType(), Defined()

ClassScale() returns the Scale at which appears a given class of vertex:

```
>>> ClassScale('U')
3
```

EdgeType () returns the type of connection between two vertices (e.g., +, <)

```
>>> i=8; Class(i), Index(i)
('I', 6)
>>> i=9; Class(i), Index(i)
('U', 1)
>>> EdgeType(8,9)
'+'
```

Defined() tests whether a vertex's id is present in the active MTG

```
>>> Defined(1)
True
>>> Defined(100000)
False
```

3.2.3 Date functions

The following function requires MTG files to contain Date information.

Todo: not yet implemented

Function	
DateSample(e1)	
FirstDefinedFeature(e1, e2)	
LastDefinedFeature(e1, e2)	
NextDate(e1)	
PreviousDate(e1)	

3.2.4 Functions for moving in MTGs

Trunk()

Trunk () returns the list of vertices constituting the bearing botanical axis of a branching system

Father()

Topological father of a given vertex.

```
>>> Label(8)
'I6'
>>> Father(8)
7
>>> Label(9)  # Let us look at vertex 9 (with the U1 label)
'U1'
>>> Father(9)  # and look for its father's index
2
>>> Label(2)  # and its father's label that appear to also be equal to 1
'U1'
```

Axis()

Axis () returns the vertices of the axis to which belongs a given vertex.

```
>>> [Label(x) for x in Axis(9)]
['U1', 'U2']
```

The scale may be specified

```
>>> [Label(x) for x in Axis(9, Scale=3)]
['I20', 'I21', 'I22', 'I23', 'I24', 'I25', 'I26', 'I27', 'I28', 'I29']
```

Ancestors()

Ancestors () returns a list of ancestors of a given vertex

```
>>> Ancestors(20)  # of I29
[20, 19, 18, 17, 16, 14, 13, 12, 11, 10, 8, 7, 6, 5, 4, 3]
>>> [Class(x)+str(Index(x)) for x in Ancestors(20)]
['I29', 'I28', 'I27', 'I26', 'I25', 'I24', 'I23', 'I22', 'I21', 'I20', 'I6', 'I5', 'I4
$\[\dots', 'I3', 'I2', 'I1']
```

Path()

The Path () returns a list of vertices defining the path between two vertices

```
>>> [Class(x)+str(Index(x)) for x in Path(8, 20)]
['120', '121', '122', '123', '124', '125', '126', '127', '128', '129']
```

Sons()

In order to illustrate the Sons () function, let us consider the vertex 8

```
>>> Class(8), Index(8)
('I', 6)
>>> [Class(x)+str(Index(x)) for x in Sons(8)]
['I20', 'I7']
```

Descendants() and Ancestors()

Descendants () an array with all the vertices, at the same scale as v, that belong to the branching system starting at v:

>>> [Class(x)+str(Index(x)) for x in Descendants(8)]

Ancestors () contains the vertices on the path from v back to the root (in this order) and finishes by the tree root.:

```
>>> [Class(x)+str(Index(x)) for x in Ancestors(8)]
```

Predecessor() and Successor()

Predecessor () returns the Father of a vertex connected to it by a '<' edge, and is therefore equivalent to:

Father(v, EdgeType-> `<').</pre>

Similarly, Successor () is equivalent to

```
Sons(v, EdgeType='<')[0]</pre>
```

Root()

Root () returns root of the branching systemme containing a given vertex and therefore is equivalent to:

```
Ancestors(v, EdgeType='<')[-1]
>>> [Class(x)+str(Index(x)) for x in Ancestors(8)]
['I6', 'I5', 'I4', 'I3', 'I2', 'I1']
>>> Root(8)
3
>>> Class(3)+str(Index(3))
'I1'
```

Todo: Complex returns Scale(v)-1 why what is it for?

>>> Complex(8)
2

Components()

Returns a list of vertices that are included in the upper scale of the vertex's id considered. The array is empty if the vertex has no components.

```
>>> Components(1, Scale=2)
[2, 9, 15, 24, 31]
>>> Components(1, Scale=3)
[3, 4, 5, 6, 7, 8, 21, 22, 23, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 25, 26, 27, 28,
→ 29, 30, 32, 33, 34, 35]
```

ComponentRoots()

Todo: to be done. find example

Location()

Vertex defining the father of a vertex with maximum scale.

```
>>> Label(9)  # starting from a Component U1 at vertex's id 9
'U1'
>>> Father(9)  # what is its Father ?
2
>>> Label(Father(9))  # answer: another U1 of vertex's id 2
'U1'
>>> Location(9)  # what is the location of vertex 9
8
>>> Label(Location(9))  # the internode I6
'I6'
```

Extremities()

```
>>> Label(8)
'I6'
>>> Label(Extremities(8))
['I29', 'I19']
```

3.2.5 Geometric interpretation

Most of the following functions are not yet implemented. See *Quick Start to manipulate MTGs* to see the usage of PlantFrame() with dressing data.

You may also use the former AML code using openalea.aml package

PlantFrame() and Plot()

One can use openalea.aml for now:

```
>>> import openalea.aml as aml
>>> aml.MTG('code_file2.txt')
>>> pf = aml.PlantFrame(2)
>>> aml.Plot()
```

Shows the MTG file at scale 2. This is possible because Diameter and Lenngth features are provided at that scale.

DressingData()	
Plot()	
TopCoord()	
RelTopCoord(e1, e2)	
BottomCoord(e1, e2)	
RelBottomCoord(e1, e2)	
Coord(e1, e2)	
BottomDiameter(e1,e2)	
TopDiameter(e1,e2)	
Alpha(e1,e2)	
Beta(e1,e2)	
Length(e1,e2)	
VirtualPattern(e1)	
PDir(e1,e2)	
SDir(e1,e2)	

3.2.6 Comparison Functions

Todo: not yet implemented

TreeMatching(e1) MatchingExtract(e1)

documentation status:

Documentation adapted from the AMAPmod user manual version 1.8 Dec 2009.

Documentation to be revised

Contents	
• MTG file	
- MTG: a Plant Architecture Databases	
* Overview	
* Explanations	
- Coding Individuals	
- Exploration: a simple example	
* Reading the MTG file	
* 3D representation	
• Example 1	
• Example 2	
* Extraction of plant entity features	
* Extracting more information from plant a	latabases
- Types of extracted data	
- Statistical exploration and model building usi	ng other Openalea/VPlants packages
– Bibliography	

3.3 MTG file

openalea.mtg provides a Multiscale Tree Graph data structure (MTG) that is compatible with the standard MTG format that was defined in the AMAPmod software. For compatibility reasons, the same interfaces have been implemented in this package. However, this is a completly new implementation written in Python that will evolve by adding new functionalities and algorithms.

3.3.1 MTG: a Plant Architecture Databases

Overview

In OpenAlea/VPlants projects, plants are formally represented by multiscale tree graphs (MTGs)²⁰. A MTG consists of a set of layered tree graphs, representing plant topology at different scales (internodes, growth units, axes, etc.).

To build up MTGs from plants, plants are first broken down into plant components, organised in different scales (*Figure3.2.a* and *Figure3.2.b*). Components are given labels that specify their types (*Figure3.2.b*, U = growth unit, F = flowering site, S = short shoot, I = internode). These labels

²⁰ Godin, C. et Caraglio, Y., 1998. A multiscale model of plant topological structures. Journal of Theoretical Biology, 191: 1-46.

are then used to encode the plant architecture into a textual form. The resulting coding file (*Figure 3.2.c*) can then be analysed by openalea.mtg tools to build the corresponding MTG (*Figure 3.2.d*).

Fig. 3: Figure 3.2, a Starting from real plants, measurements are made.

Fig. 4: Figure 3.2.b Plants components are identified and labelled (e.g, U for growth unit)

/P1			
^/A91/U1			
	/I12+A91/U1		
	~ <u2< td=""><td></td><td></td></u2<>		
		/I8+A92/F1	
		/I9+A92/F1	
		/I10+A92/F1	
		/I11+A92/U1	
	^ <a92 f1<="" td=""><td></td><td></td></a92>		
		/I1+U2	
	/I13+A91/U1		
		/I10+A92/F1	
		/I15 + A92/F1	
			/I1+U2
	~U2		
		/I6+A92/S1	
		/I7+A92/S1	
		/I8+A92/F1	
		/19 + A92/F1	
		/I10+A92/F1	
	^ <a92 f1<="" td=""><td>/110 . 132/11</td><td></td></a92>	/110 . 132/11	
	-132/11	/I1+U2	
^ <u2< td=""><td></td><td>/11+02</td><td></td></u2<>		/11+02	
^ <a92 f1<="" td=""><td></td><td></td><td></td></a92>			
A92/F1	/I1+U2		
1	/I2+U2		

Explanations

sented by a tree graph, where each component is represented by a vertex in the graph and edges represent the physical connections between them. At any given scale, the plant components are linked by two types of relation, corresponding to the two basic mechanisms of plant growth, namely the apical growth and the branching processes. Apical growth is responsible for the creation of axes, by producing new components (corresponding to new portions of stem and leaves) on top of previous components. The connection between two components resulting from the apical growth

is a **precedes** relation and is denoted by a < character.

On the other hand, the branching process is responsible for the creation of axillary buds

(these

buds can then create axillary axes with their own apical growth). The connection between two components resulting from the branching process is a **bears** relation and is denoted by a + character. A MTG integrates – within a unique model – the different tree graph representations that correspond to the different scales at which the plant is described.

Various types of attribute can be attached to the plant components represented in the MTG, at any scale.

Attributes may be geometrical (e.g., diameter of a stem, surface area of a leaf or 3D positioning of a plant component)

or morphological (e.g., number of flowers, nature of the associated leaf, type of axillary production - latent bud, short shoot or long shoot -).

	MTGs
	can
	be
	con-
	structed
	from
	field
	ob-
	ser-
	va-
	tions
	us-
	ing
	tex-
	tual
	en-
	cod-
	ing
	of
	the
	plant
	ar-
	chi-
	tec-
is described in^{22} (see <i>Figure 3.2.a</i>). Alternatively, code files representing plant architectures can also be	

ture as described in²² (see *Figure3.2.a*). Alternatively, code files representing plant architectures can also be constructed from simulation programs that generate artificial plants, or directly from any Python program, as we will illustrate it in the *Tutorial: Create MTG file from scratch*.

Todo: fix the internal link reference

The code files usually have а spreadsheet format and contain the description

²² Godin, C., Costes, E. et Caraglio, Y., 1997. Exploring plant topology structure with the AMAPmod software : an outline. Silva Fennica, 31(3): 355-366.

	of plant
	1
	topol-
	ogy
	in
	the
first few columns and the description of attributes attached to plant components on subsequent columns.	

3.3.2 Codi Individuals Different strategies have been proposed for recording topological structures of real plants, e.g.⁴³,³² for plant repre-

sented at a single scale and²¹,²⁵, for multiscale representations. In OpenAlea/Vplants, plant topological structures are abstracted as multiscale tree graphs. Describing a plant topology thus consists of describing the multiscale tree graph corresponding to this plant. The description of a given plant can be specified using a **coding language**. This language consists of a naming strategy for the vertices and the edges of multiscale graphs. A graph description consists of enumerating the vertices consecutively using their names. The name of a vertex is constructed in such a way that

Symposium on Modelling in Fruit Trees and Orchard Management, Avignon (FRA) 4-8/09/95, ISHS. Acta Horticulturae, Vol. 416, pp. 45-52.

⁴³ Room, P. et Hanan, J., 1996. Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science Update, 1(1): 33-38.

³² Hanan, J. et Room, P., 1997. Practical aspects of plant research. In: Plants to ecosystems - Advances in Computational Life Sciences 2nd International Symposium on Computer Challenges in Life Science. M.T. Michalewicz (Ed.). CISRO Australia, Melbourne, Australie, pp. 28-43. ²¹ Godin, C. et Costes, E., 1996. How to get representations of real plants in computers for exploring their botanical organisation. In: International

²⁵ Godin, C., Guédon, Y., Costes, E. et Caraglio, Y., 1997. Measuring and analyzing plants with the AMAPmod software. In: Plants to ecosystems - Advances in Computational Life Sciences 2nd International Symposium on Computer Challenges in Life Science. M.T. Michalewicz (Ed.). CISRO Australia, Melbourne, Australie, pp. 53-84.

it clearly defines the topological location of a given vertex in the overall multiscale graph. The vertices and their features are described using this formal language in a so called **code file**. Let us illustrate the general principle of this coding language by the topological structure of the plant depicted in *Figure3.3*.

Fig. 7: Figure 3.3 Coding the topological structure of a two year old poplar tree

Each vertex is associated

with

a label consisting of

a letter, called its **class**, and an integer, called its **index**. The class of a vertex often refers to the nature of the corresponding botanical entity, *e.g. I* for internode, *U* for growth unit, *B* for branching system, etc. The index of a vertex is an integer which enables the user to locally identify a vertex among its immediate neighbors. Apart from this purely structural role, indexes may be used to convey additional meaning: they can be used for instance to encode the year of growth of an entity, its rank in an axis, etc.

At a given scale, plants are inspected by working upwards from the base of the trunk and symbols representing each vertex and its relationship to its father are either written down or keyed directly into a laptop computer. The coded string starts with the

> single

a) tree graph at internode scale b) multiscale tree graph (MTG)

Fig. 8: Figure 3.4

	sym-
	bol
	Ι.
	Cod-
	ing
	a
	sin-
	gle
	axis
	(e.g.
	the
	se-
	ries
	of
	in-
	tern-
$(1, 4, \dots, 4, 4, 5, 5)$ $(2, 4, 3)$ $(1, 1, 4, \dots, 4, 1, 4, 5, 4, 5)$	

odes of the trunk depicted in *Figure3.4* a) would then yield the string:

⇔I1 ⊶<I2 ⇔<I3 **→**<I4 ⊶<I5 ⊶<I6 ⊶<I7 ⊶<I8 ⊶<I9 <u></u>→<I10 **→**<I11 ⊶<I12 ⊶<I13 ⊶<I14 →<I15 ⊶<I16 **→**<I17 →<I18 →<I19

For

а branching structure (Figure3.4 a), encoding а treelike struc-

ture in а linear sequence

→<I25

of symbols leads us to introduce a special notation, frequently used in computer science to encode tree-like structures as strings (e.g.³⁹). A square bracket is opened each time a bifurcation point is encountered during the visit (i.e. for vertices having more than one son). A square bracket is closed each time a terminal vertex has just been visited (i.e. a vertex with no son) and before backtracking to the last bifurcation point. In the above example, entity 16 is a bifurcation point since the description process can either continue by visiting entity 17 or 120. In this case, the bifurcation point 16 is first stored in a bifurcation point stack (which is initially empty). Secondly, an opened square bracket is inserted in the output string and thirdly, the visiting process resumes at one of the two possible continuations, for example I20, leading to the following code :

	I
	/
	$\hookrightarrow I1$
	↔ <i2< td=""></i2<>
	-→ <i3< td=""></i3<>
	$\hookrightarrow < I4$
	$ \begin{array}{c} \hookrightarrow I1 \\ \hookrightarrow \langle I2 \\ \hookrightarrow \langle I3 \\ \hookrightarrow \langle I4 \\ \hookrightarrow \langle I5 \end{array} $
	<u></u> <16[+120
	 The
	The
	en-
	tire
	branch
	<i>I20</i>
	to
	I28
	is
	then
	en-
	coded
	like
	en-
	ti-
	ties
	I1
	to
	<i>I</i> 6.
	En-
	tity
	129
	has
	no
have in a terminal artitle. This manufes in inconting a closed servers breaket in the string i	son,
hus is a terminal entity. This results in inserting a closed square bracket in the string :	1

and the

	(continues on next page)	$/$ $\Rightarrow I1$ $\Rightarrow < I2$ $\Rightarrow < I3$ $\Rightarrow < I4$ $\Rightarrow < I5$ $\Rightarrow < I6 [+I20]$
Chapter 3.	MTG User Guide	↔ <i21 ↔<i22 ↔<i23< td=""></i23<></i22 </i21
-	Chapter 3.	(continues on next page) Chapter 3. MTG User Guide

(continued from previous page)

The
last
bi-
fur-
ca-
tion
point
can
then
be
popped
out
of
the
bi-
fur-
ca-
tion
point
stack
and
the
vis-
it-

ing process can resume on the next possible continuation of *I6*, i.e. *I7*, leading eventually to the final output code string:

/ ⊶I1 ⊶<I2 ⇔<I3 ⊶<I4 ⊶<I5 →<I6[+I20 ⇔<I21 ⊶<I22 ⇔<I23 →<I124 ⇔<I25 ⊶<I26 **→**<I27 ⊶<I28 →<I29] ⊶<I7 ⊶<I8 ⇔<I9 →<I10 ⇔<I11 **→**<I12 ⇔<I13 ⊶<I14 ↔<I15<I16<I17<I18<I19]

Let 115 now extend this coding strategy to multiscale structures. Consider а plant described at three

different scales, for example the scale of internodes, the scale of growth units and the scale of plants (*Figure3.4* b). The depth first procedure explained above is generalized to multiscale structures in the following way. The multiscale coding strategy consists basically of describing the plant structure at the highest scale in a depth first order. However, during this process, each time a boundary of a macroscopic entity is crossed when passing from entity a to entity b, the corresponding macroentity label, suffixed by a '/', must be inserted into the code string just before the label of b and after the edge type of (a,b). If more than one macroscopic boundary is crossed at a time, corresponding labels suffixed by '/' must be inserted into the code string at the same location, labels of the most macroscopic entities first. In the multiscale graph of *Figure3.4* b for example, the depth first visit is carried out at the internode level (highest scale). The visit starts by entering in vertex 11 at the scale of internodes. However, to reach this entity from the outside, we cross boundaries of P1 and U1, in this order. Then the depth first visit starts by creating the code string :

/ ↔P1/ ↔U1/ ↔I1
Then, the cod- ing pro- cedes through ver- tices <i>I1</i> to <i>I6</i> , with no

new macroscopic boundary encountered. *I6* is

a bifurcation point and as explained above, this vertex is stored in the bifurcation point stack, a '[' is inserted in the code string and the depth first process continues on the son of *I6* whose label is *I20*. Since to reach *I20* from *I6* the macroscopic boundary of the first growth unit of the branch is crossed, on *I20* the generated code string is

Similarly
on
the
new
branch,
cod-
ing
con-
tin-
ues
and
crosses
а
growth
unit
bound-
ary
be-
tween
in-
tern-
odes
I24
and
and

I25 :

		/
		⊶P1/
		⇔U1/
		⇔I1
	(continues on next page)	⊶ <i2< th=""></i2<>
		⊶ <i3< th=""></i3<>
3.3. MTG file	31	⊶ <i4 ⊶<i5< th=""></i5<></i4
		⊶ <i6[+u1< td=""></i6[+u1<>
		⇔I20
		⊶ <i21< td=""></i21<>

(continued from previous page)

	Once
	the
	end
	of
	the
	branch
	is
	reached
	at
	en-
	tity
	I29,
	а
	']'
	is
	in-
	serted
	in
	the
	code
	string
	and
	the
	pro-
cess backtracks to bifurcation point I6 in order to resume the visit at the internode scale on the next son of I6, i.e. I7. Then coding goes through to the end of the poplar trunk since there are no more bifurcation points. Between entities 7 and I19, two growth unit boundaries are crossed which generate the final code string :	

→P1/ →U1/ ⇔I1 ⊶<I2 ⊶<I3 ⊶<I4 ⊶<I5 →<I6[+U1/ ⊶I20 ⊶<I21 ⊶<I22 ⇔<I23 ⊶<I24 →<U2/ ⊶I25 ⊶<I26 →<I27] ⊶<I28 ⇔<I29 ⊶<I7 ⇔<I8 ⊶<I9 <u></u>
<U2/

→I10<I11<I12<I13<I14<I15<U3/I16<I17<I18<I19]

It is often the case in practical applications that а number of attributes are measured

on certain plant entities. Measured values can be attached to corresponding entities using a bracket notation, ' $\{\dots\}$ '. For instance, assume that one wants to note the length and the diameter of observed growth units. For each measured growth unit, a pair of ordered values defines respectively its measured length and diameter. Then, the precedent code string would become:

→P1/ →U1 \hookrightarrow {10, ⊶5. **→**9} \hookrightarrow / \hookrightarrow I1 ⊶<I2 ⊶<I3 ⊶<I4 ⊶<I5 →<I6[+U1 \hookrightarrow {7, →3. \rightarrow 5 } \rightarrow / ⊶I20 ⇔<I21 ⇔<I22 →<I23 ⊶<I24 <u>→</u><U2 \hookrightarrow { 4, →2.1}/I25<I26<I27<I28<I29]<I7<I8<I9<U2{8,4.3}/I10<I11<I12<I13<I14<I15<U3{7.5,3.9}/I16 →<I17<I18<I19

	In this string, we can read that the first growth unit of the trunk, U1, has length 10 cm and di-
	am-
	e- ter
5.9 mm (units are assumed to be known and fixed).	lei
or min (units are assumed to be known and inter).	-
	In prac- ti- cal ap- pli- ca- tions, cod- ing plants as raw se- quences of sym- bols be- comes quite un- read- able.

In order to give the user a better feedback of the plant topology in the code itself, we can slightly change the above code format in order to achieve better legibility. Each square bracket is replaced by a new line and an indentation level corresponding to the nested degree of this square bracket. Similarly, a new line is created after each feature set and the feature values are written in specific columns. The following table gives the final code corresponding to the

example in *Figure3.3*.

(continued from previous page)

(continued from previous page)

	ENTITY-CODE /P1/U1
	^/I1 <i2<i3<< th=""></i2<i3<<>
	+U1
	^/I20 <i2< th=""></i2<>
	^/125<12
	<17<18<19<02
	/I10 <i11<i12 /I16<i17<i18< td=""></i17<i18<></i11<i12
	3.3.3 Explo
	a
	sim-
	ple
	ex-
	am-
	ple
Reading the MTG file	
	Once
	a
	plant
	database
	has
	been
	cre-
	ated,
	it
	can be
	be
	an- a-
	a- lyzed
	iyzed us-
	us- ing
	the
	ope-
	nalea.newmtg
	python
	pack-
	age.
	The
	dif-
ferent objects, methods and models contained in openalea.newmtg can be accessed through Python language.	
	The
	for-
	mal
	rep-
	re-
	sen-

ta-
tion
of
a
plant,
and
more
gen-
er-
ally
of
a
set
of
plants,
can
be
built

using the function *MTG()*:

from_ → openalea. → mtg. → aml_ → import_ → MTG g_ →=_ → MTG(→ 'wij. → mtg → ')

The procedure MTG attempts to build the plant formal representation, checking for syn-

tactic

and semantic correctness of the code file. If the file is not consistent, the procedure outputs a set of errors which have to be corrected before applying a new syntactic analysis. Once the file is syntactically consistent, the MTG is built (cf. *Figure3.4* b) and is available in the variable g.

	Warning:
	How-
	ever,
	for
	ef-
	fi-
	ciency
	rea-
	sons,
	the
	lat-
	est
	con-
	structed MTG
	MTG
	is
	said
	to
	be
	ac-
	tive
	:
	it
be considered as an implicit argument of most of the functions dealing with MTGs. See Activate()	will
	To
	get the
	the
	list
	of
	all
	ver-
	tices
	con-
	tained
	in
	g ,
	for
	in-
	stance,
	we
	write:
	write:
	write: from_ ∽openal
(continues on next page)	write: from_ →openal →mtg. →aml_
(continues on next page) 40 Chapter 3. MTG User Guide	write: from_ openal omtg. omtg. oimport

	(continued from previous page)
	vlist
	↔=_ ↔VtxList()
	instead
	of:
	vlist_ ⇔=_
	→VtxList(
	The
	func-
	tion
	VtxList()
	ex-
	tracts
	the
	set of
	ver-
	tices
	from
	the
	ac-
	tive
	MTG
	and
	re-
	turns
	the re-
	sult
	in
	vari-
able vlist.	
	Once
	the
	MTG
	is
	loaded,
	it
	is
	fre- quently
	use-
	ful
	to
	make
	sure
	that
	the
	database

the observed data. Part of this checking process has already been done by the MTG() function. But, some high-level checking may still be necessary to ensure that the database is completely consistent. For instance, in our example, we might want to check the number of plants in the database. Since plants are represented by vertices at scale 1, the set of plants is built by:

plants_
-→VtxList(
Like
vlist,
the
set
plants
is
а
set
of
ver-
tices.
The
num-
ber
of
plants
can
be
ob-
tained
by
com-
put-
ing

the size of the set plants .:

plant_ →nb_ →=_ →len(plants

Note: In the former AML language, the function Size was used to get the length. Here a call to the standard python function len() is used.

Each plant con-

	sti-
	tut-
	ing
	the
	database
	can
	be
	in-
	di-
	vid-
	u-
	ally
	and
	in-
	ter-
	ac-
	tively
	ac-
	cessed
	via
	Python.
represented by a vertex (at scale 1) scale 1 having index 1:	

.

For instance, assuming the plant corresponding to the example of *Figure3.4* b is represented by a vertex (at scale 1 with label *P1*. Plant *P1* can be identified in the database by selecting the vertex at scale 1 having index 1:

from ⊶opena ⇔mtg. ⇔aml \rightarrow impor →Index plant1_ ⇔list __= **⇔**[р_ ⇔for_ ⇔р**_** ⇒in_ ⇔plant ⇔if ⇔Index plant1 _=_ ⇔plant ⇔list[\hookrightarrow ⇔#_ ⇔plant ⇔is_ ⇔a⊔ $\leftrightarrow list$ ⇔of⊔ →verti

Note: former AML code: plant1 = Foreach _p In plants : Select(_p, Index(_p)==1)

1

2

3

The	
lambda	
ex-	
pres-	
sion	
(line	
2)	
se-	
lect	
the	
plants	
ver-	
tex	
р	
that	
ful-	
fills	
the	
con-	
di-	
ton	
In-	
dex = = 1.	
Thus,	

plant1 contains the vertex representing plant *P1*. Now it is possible to apply new functions to this vertex in order to explore the nature of plant *P1*. Assume for instance we want to know the number of growth units composing *P1*:

from
\hookrightarrow openalea.
→mtg .
⊶aml_
$\rightarrow \texttt{import}_{\Box}$
-→Components
gu_
⊶nbപ
=_
⇔len(Compor
⇔#should <mark>_</mark>
⇔be⊔
$\hookrightarrow 1$
Components(1
[2]
len (Componer
33

Todo: clarify this example and following comments

the Components function applies

	to
	a
	ver-
	tex
	v
	and
	re-
	turns
	the
	ver-
	tices
	com-
	pos-
	ing
	v
	at
	the
	next
ents of <i>plant1</i> are vertices at scale 2,	

superior scale. Since *plant1* is a vertex at scale 1, representing plant *P1*, components of *plant1* are vertices at scale 2, i.e. growth units. It is also possible to compute the number of internodes composing a plant by simply specifying the optional argument Scale in function Components:

3D representation

Example 1

Many such direct queries can be made on the plant database which provide

interactive access to it. How-

ever, a complementary synthesizing view of the database may be obtained by a graphical reconstruction of plant geometry. Geometrical parameters, like branching and phyllotactic angles, diameters, length, shapes, are read from the database. If they are not available, mean values can be inferred from samples or can be inferred from additional data describing plant general geometry¹⁹. A 3D interpretation of the MTG provides the user with natural feedback on the database. Built-in function *PlantFrame()* computes the 3D-geometry of plants. For example:

<pre>from_</pre>
Warning:
Plant-
Frame
from
ope-
nalea.mtg.aml
is
ob-
so-
let,
use
Plant-
Frame
from
ope-
nalea.mtg

Todo: script that leads to the picture in figure 3.5

Example 2

¹⁹ Godin, C., Bellouti, S. et Costes, E., 1996. Restitution virtuelle de plantes réelles : un nouvel outil pour l'aide à l'analyse de données botaniques et agronomiques. In: L'interface des mondes réels et virtuels, 5èmes Journées Internationales Informatiques, Montpellier, France 22-24/05/96, pp. 369-378.

Fig. 9: Figure 3.5

Todo: in progress

	<pre>from_</pre>
	dressing_ →data_ →=_ →dressing_ →data_ →from_
	<pre> →file(→'agraf. →drf →') topdia_</pre>
	<pre></pre>
	<pre> → 'TopDia →'). →get(x) pf_</pre>
(continues on next page)	⊶= _ ⊶PlantFrame
48 Chapter 3. MTG User Guide	⊶_ ⊶TopDiamete ⊶_

_ →

Note: the previous example uses many functions that have not been introduced yet but they will be desribe later on.

Todo: CECHK that it workds in openalea.mtg : computes a 3D-geometrical interpretation of P1 topology at scale 2, i.e. in terms of growth units (*Figure3.5* a). Like in the previous example, PlantFrame takes Scale as an optional argument which enables us to build the 3D-geometrical interpretation of P1 at the level of internodes (*Figure3.5* b):

Refinements of this

Fig. 10: Figure 3.5 An apple tree plotted with the python script above

3D ge-0metrical reconstruction may be obtained with the possibility to change the shape of the different plant components, possibly at different scales, to tune geometrical features (length, diameter, insertion angle, phyllotaxy, ...) as functions of the topological position of entities in the plant structure.

Extraction of plant entity features

When attributes of en-

ti-
ties
are
avail-
able
in
MTGs,
it
is
pos-
si-
ble
to
re-
trieve
their
val-
ues
by

using the function Feature():

first_
-→gu_
=_
→Trunk(2)[(
first_
⇔gu_
\rightarrow diameter
-→=
→Feature(fi
⇔gu,
⇔∟
\hookrightarrow
\hookrightarrow "Diameter
⇔ ")

Note: Here *Diameter* is a property/feature contained in the MTG header. Feature's names can be found in MTG's header, or directly by instrospection using this python syntax:: [x for x in g.property_names()]

The first line retrieves the vertex corresponding to the first

⊶g.

 \rightarrow property (

Trunk() returns the ordered set of components of vertex P1, and operator @ with argument 1 selects the first element of this set). Then, in the second line, the diameter of this growth unit is extracted from the database. Variable first_gu_diameter then contains the value 5.9 (see the code file). Similarly the length of the first growth unit can be retrieved:

(continued from previous page)

		Now,
		the
		user
		can
		use
		this
		new
		func-
		tion
		on
		any
		growth
		unit
		en-
		tity
		as if
		it
		were
		a
		fea-
		ture
		recorded
		in
e MTG. For instance, the volume of the first growth unit is computed by:		
		first_
		⇔gu_
		∽volume
		=
		↔volume
		⊶gu)
ado trunk and plant volumes using numpy sum?		
odo: trunk and plant volumes using numpy.sum ?		
odo: trunk and plant volumes using numpy.sum?		
odo: trunk and plant volumes using numpy.sum ?		The
odo: trunk and plant volumes using numpy.sum ?		to-
odo: trunk and plant volumes using numpy.sum ?		to- tal
odo: trunk and plant volumes using numpy.sum ?		to-
odo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume
odo: trunk and plant volumes using numpy.sum ?		to- tal vol-
odo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume
odo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume of
bodo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume of the trunk:
bodo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume of the trunk: trunk_
odo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume of the trunk: trunk.
odo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume of the trunk: trunk: trunk_ ↔volume
odo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume of the trunk: trunk. trunk_ →volume →=_ →sum([v
bdo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume of the trunk: trunk: ↓volume ↓ ↓ sum([v ↓ for_
bodo: trunk and plant volumes using numpy.sum ?		to- tal vol- ume of the trunk: trunk. trunk. ∴volume ⇒=_ ⇒sum([v ⇒for_ ⇒x_
'odo: trunk and plant volumes using numpy.sum ?	(continues on next page)	to- tal vol- ume of the trunk: trunk: ↓volume, ↓sum([v. ↓for_ ↓x. ↓in_
Fodo: trunk and plant volumes using numpy.sum ?	(continues on next page)	to- tal vol- ume of the trunk: trunk. ↓volume, ↓sum([v ↓for_ ↓x_ ↓in_ ↓growth
Codo: trunk and plant volumes using numpy.sum ?	(continues on next page)	to- tal vol- ume of the trunk: trunk. ↓volume ↓sum([vo ↓for ↓xu

(continued from previous page)

Todo: how and purpose of volume for the whole plant. Isnt' it the volume of the trunk ? The wood volume of the whole plant can be computed by: plant_ ⇔volume __= ⇔sum[volume ⇔for⊔ ⇔gu_ ⇔in⊔ →Components

Extracting more information from plant databases

As illustrated in the previous section, plant databases can be investigated by building

ap-

pro-

priate Python lambda functions. Built-in words of the **openalea.mtg.aml** module may be combined in various ways in order to create new queries. In this way, more and more elaborated types of queries can be constructed by creating user-defined functions which are equivalent to computing programs. In order to illustrate this procedure, let us assume that we would like to study distributions of numbers of internodes per growth units, such distributions being an important basic prerequisite for botanically-based 3D plant simulations (e.g.²⁹³⁷³). At a first stage, we consider all the growth units contained in the plant database together. We first need to define a function which returns the number of internodes of a given growth unit. Since in the database, each growth unit (at scale 2) is composed of internodes (at scale 3) we compute the set of internodes constituting a given growth unit x as follows:

of a given growth unit is thus the size of this set:

internode_ ⊶nb _=_ →lambda (continues on next page) →x:∟ →len(intern ² Barthélémy, D., 1991. Levels of organization and repetition phenomena in seed plants. Acta Biotheoretica, 39: 309-323. 9 de Reffye, P., Dinouard, P. et Barthélémy, D., 1991. Modélisation et simulation de l'architecture de l'Orme du Japon Zelkova serrata (Thunb.) \rightarrow set(x)) Makino (Ulmaceae): la notion d'axe de référence. In: 2ème Colloque International sur l'Arbre, Montpellier (FRA) 9-14/09/90. Naturalia Mon-

speliensa, Vol. hors-série, pp. 251-266.

³⁷ Jaeger, M. et de Reffye, P., 1992. Basic concepts of computer simulation of plant growth. In: The 1990 Mahabaleshwar Seminar on Modern Biology, Mahabaleshwar (IND). Journal of Biosciences, Vol. 17, pp. 275-291.

³ Bouchon, J., de Reffye, P. et Barthélémy, D. (Eds), 1997. Modélisation et simulation de l'architecture des végétaux. Science Update. INRA Editions, Paris, France, 435 pp.

(continued from previous page)

	Second,
	the
	en-
	ti-
	ties
	on
	which
	the
	pre-
	vi-
	ous
	func-
	tion
	has
	to
	be
	ap-
	plied,
	must
	be
	lo-
	cated
	in
	the
database. A set of vertices is created by selecting plant entities having a certain property.	
	The
	set
	of
	growth
	units
	is
	the
	set
	of
	en-
	ti-
	ties
	at
	scale
	2
·	
	gu_
	⇔set_
	→VtxList(Se
	Third,
	we
	have
	to
	ap-
	L

ply
func-
tion
in-
tern-
ode_nb()
to
each
el-
e-
ment
of
the
se-
lected
set
of
en-
ti-
ti -
>
→>
⇔>
\hookrightarrow
⇔sample1_
$\hookrightarrow =$
⇔[internode
⇔nb(x)
⇔for
⇔X⊔
⊶in _ ⊶gu_
⇒gu_ ⇔set]
>
⇔>
⇔>
⇔∟
\hookrightarrow sample1
[9,
\hookrightarrow
⇔ 5,
⇔
$\leftrightarrow 5$,
⇔
⇔6,
⊶ _ ⊶4]

Todo: in all the documentation, we should also emphasize the puire Pythonic style. For instance in the example above, we could have created a generator g.components() and then for [len([x for x in g.components(y)]) for y in gu_set]

We use

ties:

	the list-
	comprehensi
	Python
	syn-
	tax
	in
	iii or-
	der
	to
	browse
	the
	whole
	set
	of
	growth
	units
	of
	the
	database,
	and
	to
apply our internode_nb() function to each of them.	
	Now,
	we
	want
	to
	get
	the
	dis-
	tri-
	bu-
	tion
	of
	the
	num-
	ber
	of
	in- tern
	tern-
	odes
	on
	а
	more
	re-
	stricted

of growth units. More precisely, we would like to study the distribution of internode numbers of different populations corresponding to particular locations in the plant structure. We thus have to define these populations first and then to iterate the function internode_nb() on each entity of this new population like in the previous example. Let us consider for example the population made of the growth units composing branches of order 1. Consider again the whole set of growth units gu_set. Among them, those which are located on branches (defined as entities of order 1 in AML) are defined by:

>
∽>
∽>
∽ _
⇔[x
⇔for⊔
⇔x
⇔in_
→VtxList(So
⊶ if ⊶Order(x)
⇔==⊔
↔ <u>-</u> ⇔1]
[9,
⇔15]
Eventually,
af-
ter
the
sam-
ple
of
val-
ues
is
built,
the
above
func-
tion
is
ap-
plied
to
the
se-
lected
en-
ti-
u-

ties :

Todo: figure out what was the input data for the following plots and use either pylab or Histogram or both .

sample = Foreach _x In gu1

:

::

	in-
	tern-
	ode_number(_x
	At
	this
	stage,
	а
	set
	of
	val-
	ues
	has
	been
	ex-
	tracted
	from
	the
	plant
	database
	cor-
	re-
	spond-
	ing
	to
	a
	topo-
	log-
ically selected set of entities. This sample of data can be further investigated with appropriate AML tools. For example, AML provides the built-in function <code>Histogram()</code> which builds the histogram corresponding to a set of values.:	

ing to different topological situations, we would obtain the series of plots in Figure 3-6 [4].

ing samples correspond-

3.3.4 Types of extracted data

various types of data can be extracted from MTGs. For each plant component in the database, attributes can be ex-

tracted or synthesised using the Python language. The wood volume of a component, for instance, can be synthesised from the diameter and the length of this component measured in the field. The type of measurement carried out in the context of architectural analysis emphasises the use of discrete variables which can be either symbolic, e.g. the type of axillary production at a given node (latent bud, short shoot or long shoot) or numeric (number of flowers in a branching structure). In general, a plant component can be qualified by a set of attributes, called a multivariate attribute. A plant component, for instance, could be described by a multivariate attribute made up of the volume, the number of leaves, the azimuth and the botanical type of the constituent.

> Multivariate attributes correspond to

Different distributions of the number of internodes par growth unit, in different topological situations

the first category of data that can be extracted from MTGs. А second

and more complex category of particular importance is defined by sequences of – possibly multivariate – attributes. The aim of this category is to represent biological sequences that can be observed in the plant architecture. These sequences may have two origins: they can correspond to changes over time in the attributes attached to a given plant component. In this case, the sequences represent the trajectories of the components with respect to the considered attributes and the index parameter of the sequences is the observation date. Sequences can also correspond to paths in the tree topological structures contained in MTGs. In this case, the index parameter of the sequences is a spatial index that denotes the rank of the successive components in the considered paths. Spatially-indexed sequence is a versatile data type for which the attributes of a component in the path can be either directly extracted or synthesised from the attributes of the borne components. In the later case, all the information contained in the branching system can be efficiently summarised into a sequence of multivariate attributes, corresponding to the main axis of the branching system.

А third category of object can be extracted from MTGs, namely trees of multivariate _ at-

tributes. Like sequences, these objects are intended to preserve part of the plant organisation in the extracted data.

Tree structures represent the raw organisation of the components that compose branching structures of the plant at a certain scale of analysis.

	Data
	ex-
	tracted
	from
	MTGs
	can
	thus
	be
	or-
	dered
	ac-
	cord-
	ing
	to
	their
	level
	of
	struc-
	tural
	com-
	plex-
	ity:
	un-
	struc-
red data, sequences, trees. These levels correspond to different degrees to which the structural information contained	

tured data, sequences, trees. These levels correspond to different degrees to which the structural information contained in the MTG is summarised and are associated with different statistical analysis techniques.

3.3.5 Statis ex- plo- ration and model build- ing us-
other Ope- nalea/VPla
pack-
ages
To ex- plore plant ar-

chitecture, users are frequently led to create data samples according to topo-

logical criteria on plant architecture. A wide range of AML primitives that apply to MTGs enable the user to express these topological criteria and select corresponding plant components. Samples of the three main structural data types can be created as described below:

	Multivariate
	sam-
	ples:
	Sim-
	ple
	data
	sam-
	ples
	can
	be
	cre-
	ated
	by
	com-
	put-
	ing
	the
	set
	of
	-
	pos-
	si-
	bly
multivariate - attributes associated with a selected set of components, e.g. the number of flowers borne by components that appeared in the plant structure during 1995. The packages openalea.stat_tool and openalea.sequence_analysis provides a core of tools for exploring these objects. However, a very large panoply of methods are available in other statistical packages for analysing multivariate samples (the user can export data to other softwares such as RPy).	
	Samples of

of mul-

	ti-
	vari-
	ate
	se-
	quences:
	In
	the
	con-
	text
	of
	plant
	ar-
	chi-
	tec-
	ture
	anal-
	у-
	sis,
	MTG
	ob-
	jects
h	

present two advantages. On the one hand, part of the plant organisation is directly preserved in the sample through the notion of 'sequence' discussed above. On the other hand, the structural complexity of samples of sequences still remains tractable and efficient exploratory tools and statistical models can be designed for them²⁸²⁹. The openalea.sequence_analysis system includes mainly classes of stochastic processes such as (hidden) Markov chains, (hidden) semi-Markov chains and renewal processes for the analysis of discrete-valued sequences. A set of exploratory tools dedicated to sequences built from numeric variables is also available, including sample (partial) autocorrelation functions and different types of linear filters (for instance symmetric smoothing filters to extract trends or residuals).

> Samples of multivariate trees: The analysis of samples of tree structured data is а

²⁸ Guédon, Y., Barthélémy, D. et Caraglio, Y., 1999. Analyzing spatial structures in forests tree architectures. In: Salamandra (Ed) Empirical and process-based models for forest tree and stand growth simulation, Oeiras, Portugal 21-27/09/1997, pp. 23-42.

²⁹ Guédon, Y. et Costes, E., 1999. A statistical approach for analyszing sequences in fruit tree architecture. In: Wagenmakers P.S., van der Werf W., Blaise Ph. (Eds), 5th International Symposium on Computer modelling in fruit research and orchard management, Wageningen, The Netherlands 28-31/07/1998. Acta Horticulturae, pp. 271-280.

challenging

problem. A sample of trees could represent a set of comparable branching systems considered at different locations in a plant or in several plants. Similarly, the development of a plant can be represented by a set of trees, representing different steps in time of a branching system. Plant organisation for this type of object is relatively well preserved in the raw data. However, this requires a higher degree of conceptual and algorithmic complexity. We are currently investigating methods for computing distances between trees¹³ which could be used as a basis for dedicated statistical tools.

	OpenAlea/VPla
	con-
	tains
	а
	large
	set
	of
	tools
	for
	analysing
	these
	dif-
	fer-
	ent
	types
	of
	sam-
	ples,
	with
	spe-
	cial
	em-
	pha-
	sis
edicated to the analysis of samples of discrete-valued sequences. These tools fall into one of the three	

on tools dedicated to the analysis of samples of discrete-valued sequences. These tools fall into one of the three following categories:

explorator
anal-
у-
sis
re-
ly-
ing
on
de-
scrip-
tive
meth-
ods
(graph-
i-

characteristics such as sample autocorrelation functions, etc.),	cal dis- play, com- pu- ta- tion of
	parametric model build- ing,
	 comparison tech- niques (be- tween in- di- vid- ual data).
	The aim of build- ing a model is
	to ob- tain ad- e- quate
	but par- si- mo- nious rep-
of samples of data. A parametric model may then serve as a basis for the interpretation of a biological phenomenon The elementary loop in the iterative process of model building is usually broken down into three stages:	re- sen- ta- tion

1.

2.

on the basis of the results given by an exploratory analysis of the data and some biological knowledge.

The estimation stage, consists of inferring the model parameters on the basis of

the data sample. This model is chosen from within the family determined at the specification stage. Automatic methods of model selection are available for classes of models such as (hidden) Markov chains dedicated to the analysis of stationary discrete-valued sequences. The estimation is always made by algorithms based on the maximum likelihood criterion. Most of these algorithms are iterative optimisation schemes which can be considered

as applications of the Expectation-Maximisation (EM) algorithm to different families of models,¹²²⁶²⁷. The EM algorithm is a general-purpose algorithm for maximum likelihood estimation in a wide variety of situations best described as incomplete data problems.

3. The validation stage, consists of checking the fit between the estimated model and the data to reveal inadequacies and thus modify the a priori specified family of models. Theoretical characteristics can be

to reveal inadequacies and thus modify the a priori specified family of models. Theoretical characteristics can be computed from the estimated model parameters to fit the empirical characteristics extracted from the data and used in the exploratory analysis.

> The parametric approach based on the process of model building is com-

¹² Dempster, A.P., Laird, N.M. et Rubin, D.B., 1977. Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39: 1-38.

²⁶ Guédon, Y., 1998. Analyzing nonstationary discrete sequences using hidden semi- Markov chains. Document de travail du programme Modélisation des plantes, 5-98. CIRAD, Montpellier, France, 41 pp.

²⁷ Guédon, Y., 1998. Hidden semi-Markov chains: a new tool for analyzing nonstationary discrete sequences. In: 2nd International Symposium on Semi-Markov models: theory and applications, J. Janssen et N. Limnios (Eds), Compiègne, France 09-11/12/1998, Université de Technologie de Compiègne, pp. 1-7.

ple-
mented
by
а
non-
para-
met-

ric approach based on structured data alignment (either sequences or trees). Distance matrices built from the piece by piece alignments of a sample of structured data can be explored by clustering methods to reveal groups in the sample.

	documentatio sta- tus
	Documentation adapted
	from
	the
	AMAP- mod
	user
	man-
	ual ver-
	sion
	1.8.
	3.3.6 Bibli
	3.4 Illust
	ex-
	plor-
	ing
	an
	ap-
	ple
	tree
	or-
	chard
Todo: This section has to be validated (e.g., translate aml code into python)	
The section has to be variated (e.g., furishite and code into python)	
	Let
	us

now
il-
lus-
trate
the
us-
age
of
ope-
nalea.mtg
pack-
age
to-
gether
with
other
pack-
ages
such
as
ope-
nalea.sequence

in a real application. To do this, we shall consider an apple tree orchard and show how a plant architecture database can be created from observations²⁴. Then, we shall use this database to illustrate the use of specific tools employed to explore plant architecture databases.

	3.4.1 con- text and data col- lec- tion	Biolo
	The ap- pli- ca- tion is part of a gen- eral se- lec- tion	
ted on an apple-tree		

²⁴ Godin, C., Guédon, Y. et Costes, E., 1999. Exploration of plant architecture databases with the AMAPmod software illustrated on an apple-tree bybird family. Agronomie, 19(3/4): 163-184.

tional de la Recherche Agronomique), and aims to improve apple tree species as regards morphological characters and more classical criteria such as fruit quality and disease resistance. In this particular example, two apple tree clones were chosen for their contrasting growth and branching habits. The first clone ('Wijcik') exhibits a very particular growth and branching habit, characterised by short internodes, great diameters and the absence of long axillary branches. By contrast, the second clone ('Baujade') exhibits many long and flexible branches. A population of 102 hybrids was obtained by crossing these two clones. The objective of this work was to study how morphological characters, such as the length of the internodes or the number of long lateral branches, are distributed within the progeny.

Creation
of
the
database
The
branch-
ing
sys-
tems
borne
by
the
three-
year-
old
an-
nual
shoot
of
the
trunk
is
de-
scribed

for each individual. The branching system is first broken down into axes i.e. linear portions of stem derived from the same bud. Each axis is then divided into portions created during the same year (called annual shoots). When cessation and resumption of growth occur within a year, the annual shoot can be split into growth units, i.e. portions created over the same period (or between two resting periods). Finally, the growth units can be divided into internodes, i.e. portions of stem between two leaves. Regarding these successive decompositions, a given branching system is simultaneously considered at four scales. The different plant components and their connections are represented into a code file as explained previously.

In order to

give
a
quan-
ti-
ta-
tive
idea
of
the
to-
tal
re-
sources
nec-
es-
sary
for
an
ap-
pli-

cation of this size, it should be noted that all the measures were carried out by a team of 6 persons over 5 days. The collected data, initially recorded on paper, were then computer-entered by 1 person over 20 days using a text editor and consists of a file of approximately 16000 lines of code. The corresponding MTG is constructed in 45 seconds on a SGI-INDY workstation. It contains about 65000 components and some 15000 attributes. The overall size of the database is 7 Mb.

vi-
su-
al-
i-
sa-
tion
of
real
plants
То
build
the
database
as-
so-
ci-
ated
with
the
col-
lected
data,
the
AMAP-

3.4.2 3D

built from the encoded plant file:

launched and an MTG is plant_ →database_ -→=__ →MTG (⇔"wij. ⇔mtg **→**") The primitive MTG attempts to build а formal representation of the orchard, checking for syntactic and semantic correctness of the code file. If the file is not consistent, the procedure outputs a set of errors

which must be corrected before applying a new syntactic analysis. Once the file is syntactically consistent, the MTG is built and is available in the variable plant_database. However, for efficiency reasons, the latest constructed MTG is said to be "active": it will be considered as an implicit argument for most of the primitives dealing with MTGs. For example, to obtain the set of vertices representing the plants contained in the database, i.e. vertices at scale 1, the primitive VtxList is used and applies by default to the active MTG plant_database:

> plant_ →list _=_ →VtxList(So

mod system is

It is then possible to obtain an initial feedback on the collected data by displaying а

3D geometrical interpretation of a plant from the MTG. This notably allows the user to rapidly browse the overall database. For instance, a geometric interpretation of the 5th plant in the set of plants described in the MTG can be computed and plotted using the primitive PlantFrame as follows, (Figure 3-7a):

Todo: continue to adapt the documenation from here including example here above

Such reconstructions can be carried out even if no

geoin the collected data. In this case, algorithms are used to infer the missing data where possible (otherwise, default information is used)¹⁹. In other cases, plants are precisely digitised and the algorithms can provide accurate 3D geometric reconstructions⁷²²⁴⁶⁴⁸.

Apart from giving а natural view of the plants contained in the database. these 3D reconstructions play

another important role: they can be used as a support to graphically visualise how various sorts of information are distributed in the plant architecture. Figure 3-7b for example shows the organisation of plant components according to their branching order (trunk components have order 0, branch components have order 1, etc.). This would be obtained by the following commands:

```
(continues on next page)
```

¹⁹ Godin, C., Bellouti, S. et Costes, E., 1996. Restitution virtuelle de plantes réelles : un nouvel outil pour l'aide à l'analyse de données botaniques et agronomiques. In: L'interface des mondes réels et virtuels, 5èmes Journées Internationales Informatiques, Montpellier, France 22-24/05/96, pp. 369-378.

 $^{^{7}}$ Costes, E., Sinoquet, H., Godin, C. et Kelner, J.J., 1999. 3D digitizing based on tree topology : application to study th variability of apple quality within the canopy. Acta Horticulturae, in press.

²² Godin, C., Costes, E. et Caraglio, Y., 1997. Exploring plant topology structure with the AMAPmod software : an outline. Silva Fennica, 31(3): 355-366.

⁴⁶ Sinoquet, H., Adam, B., Rivet, P. et Godin, C., 1998. Interactions between light and plant architecture in an agroforestry walnut tree. Agroforestry Forum, 8(2): 37-40.

⁴⁸ Sinoquet, H., Rivet, P. et Godin, C., 1997. Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica, 31(3): 265-273.

(continued from previous page) <u>ب</u> ⊶പ ∽∟ ⊶പ -→Case ⊶1:<u></u> ⇔DarkGrey<mark>」</mark> ⊶Case⊔ ⊶2:**_** →LightGrey ⇔Case ⊶3:⊔ →Black L. ⇔⊔ ∽⊔ ⇔ີ →Default: ⇔White Plot (geom_ ⇔struct, ⇔∟ →Color=cold →order) This representation emphasises different informations related to the branching order: it can be seen in Figure 3-7b that the maximum branching order is 4, that this order is reached only once in the tree crown, and that this occurs at a floral site (black component). The use

of

the 3D representation of plant structure can also be illustrated in the context

of plant growth analysis. The year in which each component grew can be retrieved from a careful analysis of the plant morphological makers. If this information is recorded in the MTG, it is then possible to colour the different components accordingly. Figure 3-7c shows, for instance, that a branch appeared on the trunk during the first year of growth. This information can then be linked to other data, e.g. the branching order of a component or the number of fruits borne by a component, and thus provides deeper insight into the plant growth process.

Thanks to the multiscale nature of the plant representation, more or less detailed informa-

tion can be projected onto the plant structure. Let us consider again the context of plant growth analysis. Plant growth is characterised by rhythms that result in the production of long internodes during periods of high activity and short internodes during rest periods (indicated on the plant by scares close together). These informations, at the level of

internodes, can be projected onto the plant 3D structure (Figure 3-7d). Like the year of growth, this information enables us to access plant growth dynamics, but now, at an intra-year scale.

	Finally, an- other use for the vir- tual re- con- struc- tion of mea- sured plants is il- lus- trated in
	in Fig-
	ure
So and Sh. These plants have been reconstructed from the MTC at the scale of each leafy intermede. This enclose us	3-
8a and 8b. These plants have been reconstructed from the MTG at the scale of each leafy internode. This enables us to obtain a natural representation of the plant which can be used for instance in models that are intended to describe the interaction of the plant and its environment (e.g. light) at a detailed level, e.g. ⁴¹ . More generally, the user can plot	

a set of plants from the database (Figure 3-9):

orchard_ →=_ →aml. →PlantFrame →list) aml. →Plot(orcha

3.4.3	
of	
data	
sam-	
ples	
Visualiz	ing
in-	
for-	

mations

⁴¹ Rapidel, B., 1995. Etude expérimentale et simulation des transferts hydriques dans les plantes individuelles. Application au caféier (Coffea arabica L.). Thèse Doctorat, Université des Sciences et Techniques du Languedoc (USTL), Montpellier, France, 246 pp.

projected onto the 3D representation of plants is one way to explore the

database. More quantitative explorations can be carried out and the most simple of these consists of studying how specific characters are distributed in the architecture of the plant population. To do this, samples of components are created corresponding to some topological or morphological criteria, and the distributions of one or several characters (target characters) are studied on this sample. This data extraction always follows the three following steps:

ter itself is defined. It may be more or less directly derived from the data recorded in the field. For example, it is straightforward to define the diameter of a component if this has been measured in the field. On the other hand, the maximum branching order of the components that are borne by a given component needs some computation. Thirdly, the target character is computed for each component of the selected sample of components.

The out-

put of these three operations is а set of values that can be analysed and visu-

alised in various ways. Let us assume for instance that we wish to determine the distribution of the number of internodes produced during a specific growth period for all the plants in the database. It is first necessary to determine the sample of components on which we wish to study this distribution. In our case, we assume that we are interested in the growth units of the trunk that are produced during the first year of growth. This would be written as:

sample ب= ⊶Foreach_ \hookrightarrow _____ ⇔component. ⇔In_ \rightarrow growth_ →unit_ \rightarrow list: <u>ب</u> ∽∟ ∽∟ ⇔⊔ →Select(_ →component, ⊶Order(_ →component) _==_ **→**0 ⊶And **—** \hookrightarrow ⇔⊔ ⊶പ \rightarrow Index(_ →component) _==_ **→**90)

The variable sample thus contains the set of growth units whose order is 0 (i.e. which are parts of trunks)

and whose growth year is 1990 (assuming 1990 corresponds to the first year of growth). The second step consists of defining the target character. This can be done by defining a corresponding function:

The
num-
ber
of
in-
tern-
odes
of
а
com-
po-
nent
_X
(as-
sumed
to
be
а
growth
unit)

the size of the set of components that compose this growth unit $_x$ (assuming that growth units are composed of internodes). Finally, this function is applied to each component in the previously selected sample and the corresponding histogram is plotted (Figure 3-10):

lustrates the kind of interaction a user may expect from the exploration

of tree architecture. In the field, the growth units of the trunks produced during the first year of growth present a variable length, ranging roughly from 10 to 100 internodes. However, the quantitative exploration of the database shows that the histogram exhibits two relatively well-separated sub-populations of components (Figure 3-10). The sub-population of short components corresponds to the first annual shoots of the trunk, made up of two successive intra-annual growth units, while the sub-population of long components corresponds to the first annual shoots made up of a single growth unit.

In

der to separate and characterise these two subpopulations, we can make the assumption that the

global distribution is a mixture of two parametric distributions, more precisely, two negative binomial distributions. The parameters of this model can be estimated from the above histogram as follows:

mixture
=_
⇔Estimate(s
⇔value,
⇔ <u>_</u>
\hookrightarrow
⊶"MIXTURE
\hookrightarrow ",
\hookrightarrow
⇔BINOMIAL
\hookrightarrow ",
⇔
_ ∽
→BINOMIAL
Plot (mixture
For
all
all

all parametric models in the system,

the

estimation and computation of various quantities (likelihood of the observed data for the estimated model, theoretical characteristics, etc) involved in the validation stage. As demonstrated by the cumulative distribution functions in Figure 3-11b, the data are well fitted by the estimated mixture of two negative binomial distributions. The weights of the two components of the mixture are very close (0.49 / 0.51), the first being centred on 21 internodes and the second on 53 internodes (Figure 3-11a). Due to the small overlap of these two mixture components (Figure 3-11a), the extracted sample can be optimally split up into two optimal sub-populations with a threshold fixed at 37.

As illustrated in this example, using AMAPmod, the user can query the database, make assumptions and

function Estimate performs both parameter

look for data regularities. This interactive exploration process enables the user to build a rich and detailed mental representation of the architectural database, which relies on various complementary viewpoints.

	3.4.4 and anal- y- sis of bi- o- log- i- cal se- quence	
	The	
	pre-	
	vi-	
	ous	
	sec-	
	tion	
	il-	
	lus-	
	trates	
	the	
	ex-	
	trac-	
	tion	
	of	
	a	
	sim-	
	ple	
	sam-	
	ple	
	type,	
	made	
	up	
	of	
	nu-	
meric values. In this section, we consider a more complex sample type, made up of sequences of values. For example, in the apple tree database, let us consider sequences of lateral productions along trunks. Our aim is to analyse how lateral branches are distributed along the trunks of hybrids.		

The sequences are coded as follows: for each node from the base to the top. Each node is qualified by the type of lateral production (latent bud: 0, one-year-delayed short shoot: 1, one-year-delayed long shoot: 2 and immediate shoot: 3). This sample of sequences is built as follows:

plant, the 90 annual shoot of the trunk is described node by

(continued from previous page)

	The
	AML
	vari-
	able
	growth_unit_sa
	con-
	tains
	the
	set
	of
	growth
	units
	of
	in-
	ter-
	est
	(as-
	sumed
	to
	be
	se-
	lected
	be-
	fore).
For each component in this set, the array of nodes that compose its main axis is browsed by the second Foreach construct. Finally, for each node, a function lateral_type() (defined elsewhere) is used to encode the nature of the lateral production at that node.	

Figure 3-12 illustrates the diversity of annual shoot branching structures encountered in the studied hybrid family, which results from the different branching habits of the two parents. In our context, we wish to characterise and classify the hybrids according to their branching habits. The difficulty arises from the fact that the branching pattern is made of a succession of branching zones which are not characterised by a single type of lateral production but by a combination of types (e.g. short shoots interspersed with latent buds). We shall use this example to illustrate how parametric models may be used in AMAPmod to identify and characterize successive branching zones along these annual shoots.

We assume that sequences have а twolevel structure. where annual shoots are made up of а succession

of zones, each zone being characterised by a particular combination of lateral production types. To model this twolevel structure, we use a hierarchical model with two levels of representation. At the first level, a semi-Markov chain (Markov chain with null self-transitions and explicit state occupancy distributions) represents the succession of zones along the annual shoots and the lengths of each zone⁶²⁸²⁹. Each zone is represented by a state of the Markov chain and the succession of zones are represented by transitions between states. The second level consists of attaching to each state of the semi-Markov chain a discrete distribution which represents the lateral productions types observed in the corresponding zone. The whole model is called a hidden semi-Markov chain²⁶²⁷.

> The model parameters

⁶ Costes, E. et Guedon, Y., 1997. Modelling the sylleptic branching on one-year-old trunks of apple cultivars. Journal of the American Society for Horticultural Science, 122(1): 53-62.

²⁸ Guédon, Y., Barthélémy, D. et Caraglio, Y., 1999. Analyzing spatial structures in forests tree architectures. In: Salamandra (Ed) Empirical and process-based models for forest tree and stand growth simulation, Oeiras, Portugal 21-27/09/1997, pp. 23-42.

²⁹ Guédon, Y. et Costes, E., 1999. A statistical approach for analyszing sequences in fruit tree architecture. In: Wagenmakers P.S., van der Werf W., Blaise Ph. (Eds), 5th International Symposium on Computer modelling in fruit research and orchard management, Wageningen, The Netherlands 28-31/07/1998. Acta Horticulturae, pp. 271-280.

²⁶ Guédon, Y., 1998. Analyzing nonstationary discrete sequences using hidden semi- Markov chains. Document de travail du programme Modélisation des plantes, 5-98. CIRAD, Montpellier, France, 41 pp.

²⁷ Guédon, Y., 1998. Hidden semi-Markov chains: a new tool for analyzing nonstationary discrete sequences. In: 2nd International Symposium on Semi-Markov models: theory and applications, J. Janssen et N. Limnios (Eds), Compiègne, France 09-11/12/1998, Université de Technologie de Compiègne, pp. 1-7.

mated
from
the
ex-
tracted
sam-
ple
of
se-
quences
by
the
func-
tion
Es-

are esti-

timate:

1
hsmc
=_
⇔Estimate(
⇔
\hookrightarrow
\hookrightarrow "HIDDEN_
→SEMI-
→MARKOV
⇔ " ,
⇔
⇔initial_
⇔hsmc,
⇔Segmentat
=
→True)
The.

The first argument seq represents the extracted sequences, "HIDDEN_SEI MARKOV" specifies

els and initial_hsmc is an initial hidden semi-Markov chain which summarises the hypotheses made in the specification stage. An optimal segmentation of the sequences is required by the optional argument Segmentation set at True.	the fam- ily of mod-
	The

The hidden semi-Markov chain built from the 90 annual shoots of the 102 hybrids is depicted in Figure

3-13 with the following convention: each state is represented by a box numbered in the lower right corner. The possible transitions between states are represented by directed edges with the attached probabilities noted nearby. Transient states are surrounded by a single line while recurrent states are surrounded by a double line. State i is said to be recurrent if starting from state i, the first return to state i always occurs after a finite number of transitions. A nonrecurrent state is said to be transient. The state occupancy distributions which represent the length of the zones in terms of number of nodes are shown above the corresponding boxes. The possible lateral productions observed in each zone are indicated inside the boxes, the font sizes being roughly proportional to the observation probabilities(for state 3, these probabilities are 0.1, 0.62 and 0.28 while for state 4, these probabilities are 0.01, 0.07 and 0.92 for latent bud, one-year-delayed short shoot and one-year-delayed long shoot respectively). State 0 which is the only transient state is also the only initial state as indicated by the edge entering in state 0. State 0 represents the basal non-branched zone of the annual shoots. The remaining five states constitute a recurrent class which corresponds to the stationary phase of the sequences.

Building a parametric model gives us

a global

insight into the structure of the 90 annual shoot of the

trunk for the 102 hybrids. The adequacy of the estimated model to the data is checked by examining the fitting of theoretical characteristic distributions computed from the model parameters to the corresponding observed characteristic distributions extracted from the data. Counting characteristic distributions for example focus on the number of occurrences of a given feature per sequence. The two features of interest are the number of series (or clumps) and the number of occurrences of a given lateral production type per sequence. The fits of counting distributions (Figure 3-14) can be plotted by the following function:

(continued from previous page)

	segmented_sec
	rep-
	re-
	sents
	the
	ob-
	served
	se-
	quences
	aug-
	mented
	by
	а
	vari-
	able
	which
	con-
	tains
	the
	cor-
	re-
	spond-
	ing
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between	op-
imal state sequences (Figure 3-12). A careful examination of this optimal segmentation help us highlight a discrimi- nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by the function ValueSelect relying on the absence/presence of state 4 on the 1st variable:	op-
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between nybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long	
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ ⇔seq_
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ ⇔seq_ ⇔=_
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ ⇔seq_ ⇔=_
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ ⇔seq_ ⇔=_ ⇔ValueSele
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ ⇔seq_ ⇔=_ ⇔ValueSele ⇔seq,
ating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between ybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long ranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ ⇔seq_ ⇔=_ →ValueSele →seq, ⇔_ ⇔1, ⊶_
ating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between ybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long ranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ →seq_ →=_ →ValueSele →seq, →_ →1, →_ →4,
ating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between ybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long ranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ →seq_ →"=_ →ValueSele →seq, →1, →1, →4, →Mode_
ating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between ybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long ranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ →seq_ →=_ →ValueSele →seq, →_ →1, →_ →4,
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ → seq_ → ValueSele → seq, → 1, → 4, → Mode_ → -
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	<pre>wijcik_</pre>
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	wijcik_ \Rightarrow seq_ \Rightarrow =_ \Rightarrow ValueSele \Rightarrow seq, \Rightarrow _ \Rightarrow 1, \Rightarrow _ \Rightarrow 4, \Rightarrow Mode_ \Rightarrow - \Rightarrow > \Rightarrow _ \Rightarrow _
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	<pre>wijcik_</pre>
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	<pre>wijcik_ → seq_ → =_ → ValueSele → seq, → 1, → 1, → 4, → Mode_ → - → > → Reject) baujade_ → seq_ → =_</pre>
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	<pre>wijcik_ →seq_ →=_ →ValueSele →seq, ↓1, ↓1, ↓4, →Mode_ ↔- →> ↓Reject) baujade_ →seq_ →=_ →ValueSele</pre>
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	<pre>wijcik_ →seq_ →=_ →ValueSele →seq, →1, →1, →4, →Mode_ →- →> →Reject) baujade_ →seq_ →Seq, →e →Seq, →a →Reject) baujade_ →seq, →a →Seq, →a →a →Reject) baujade_ →seq, →a →Seq, →a →a →Seq, →a →a →A →A →A →A →A →A →A →A →A →A</pre>
nating property: it suggests using the absence of state 4 in this optimal segmentation as a discrimination rule between hybrids closer to the Wijcik parent than to the Baujade parent (and conversely). State 4 corresponds to a dense long pranching zone characteristic of the Baujade parent. Two sub-populations close to each of the parents are extracted by	<pre>wijcik_ → seq_ → =_ → ValueSelee → seq, → 1, → 4, → Mode_ → - → > → Reject) baujade_ → seq_ → =_ → ValueSelee</pre>

(continues on next page)

ſ

⊶**∟** ⊶4,

⊶Mode∟ ⊶-

(continued from previous page)

	i
	Simply
	count-
	ing
	the
	num-
	ber
	of
	ax-
	il-
	lary
	long
	shoots
	per
	se-
	quence
	would
	not
	have
	been
	suf-
	fi-
	cient,
	since
	for
a given number of long shoots, these can be either scattered (Figure 3-12c) or aggregated in a dense zone (Figure	
3-12d). This is confirmed by comparing the empirical distributions of the number of series with the number of	
occurrences of axillary long shoots per sequence extracted from the two hybrid sub-populations. The empirical	
distributions of the number of series/number of occurrences of axillary long shoots (coded by 2) per sequence for the	
sub-population close to the Wijcik parent can be simultaneously plotted by the following function (Figure 3-15a):	
	AML>
	→Plot(Extr
	⇔seq,
	⇔⊔
	\hookrightarrow
	↔"NbSeries
	\hookrightarrow ",
	⇔ _

⇔2, ⇔__ ⇔2), ⇔__

⇔", ⇔⊔ ⇔2,

⊶**∟** ⇔2))

→ExtractHis →seq, →__ →

↔"NbOccurre

	These
	em-
	pir-
	i-
	cal
	dis-
	tri-
	bu-
	tions
	are
	very
	sim-
	i-
	lar
	for
	the
	sub-
	population
	close
	to
	the
	Wi-
	j-
	j- cik
The second (Figure 2.15.) Must of the annias and thus assumed of a simple lange that These annihils distributions are	CIK
parent, (Figure 3-15a). Most of the series are thus composed of a single long shoot. These empirical distributions are	
very different for the sub-population close to the Baujade parent, (Figure 3-15b). In this case, the series are frequently composed of several successive long shoots.	
	The
	stud-

stud ied sample of sequences encompasses a broad spectrum of branching habits ranging from the Wi-

jcik to the Baujade parent one. Hence, the building of a parametric model is mainly used for identifying a discrimination rule to separate the initial sample of branching sequences into two sub-samples.

documentation
sta- tus
Documentation
adapted from
the
AMAP-
mod
user
man-
ual
ver-
sion
1.8.
3.4.5 Biblio
3.5 Tutor
Cre-
ate
MTG
file
from
scratch
This
tu-
to-
rial
briefly
in-
tro-
duces
the
main
fea-
tures
of
the pack-
раск-

age

		you the
		the
		con- tents
		and
	potential of the openalea.mtg library.	anu
	potential of the openatea.mg notary.	
		All
		the
		ex-
		am-
		ples
		can be
		tested
		in
		a
		Python
		in-
		ter-
		preter.
		1
		3.5.1 MTG
		cre-
		ation
		Let
		us
		con-
		sider
		the
		fol-
		low-
		ing
		ex-
		am-
		ple:
1		import
1		import_ ⇔openalea.
1		⇔openalea. ⇔mtg_
1		⊶openalea. ⊶mtg_ ⇔as_
		⇔openalea. ⇔mtg_
2		⇔openalea. ⇔mtg_ ⇔as_ ⇔mtg
		<pre> openalea. omtg_ omtg_ omtg </pre>
2		<pre> → openalea. → mtg_ → as_ → mtg g_ →=_ → mtg. </pre>
2		<pre> openalea. →mtg_ →as_ →mtg g_ →=_ </pre>
2 3		<pre> → openalea. → mtg → as → mtg g_</pre>
2 3		<pre> → openalea. → mtg → as_ → mtg g_ →=_ → mtg. → MTG() print_</pre>
2 3 4 5		<pre>→openalea. →mtg_ →as_ →mtg g_ →=_ →mtg. →MTG() print_ →len(g)</pre>
2 3		<pre>→openalea. →mtg_ →as_ →mtg g_ →=_ →mtg. →MTG() print_ →len(g) print_</pre>
2 3 4 5	(continues on next page)	<pre>→openalea. →mtg_ →as_ →mtg g_ →=_ →mtg. →MTG() print_ →len(g)</pre>

	(continued from previous page)	
7		print
		⇔g .
		⇔nb_
		\hookrightarrow scales()
8 9		root
9		
		⇔g.
		⇔root
10		print
		⇔g.
		⊶scale(root
	•	
		First,
		the
		pack-
		age
		is
		im-
		ported
		(line
		1).
		Then,
		a
		mtg
		is
		in-
		stan-
		ti-
		ated
		with-
		out
		pa-
		ram-
		e-
		ters (line
		(inite 3).
		0).
	•	However,
		as
		as for
		a
		u Tree,
		the
		mtg
		is
		not
		empty
		(line
		5-

	7).
•	There is al- ways
	a root node at scale 0
	(line 9- 10).
	3.5.2 Simp edi- tion
	We add a com- po-
	nent <i>root1</i> to the
	root node, which will be
	the root node of the
	tree at the scale
1	<pre>1. root1_</pre>
2 3	⇔component •
(continues on next page)	⇔Edit」 ⇔the」

103 →*tree* ⊶at⊔ ⇔scale ⊶1<u> </u> ⇔by_

3.5.3 the mtg at one scale	Trave
The mtg can be tra- versed at any scales like	

	а
	reg-
	u-
	lar
	tree.
	Their
	are
	three
	traver-
	sal
	al-
	go-
	rithms
	work-
ng on Tree data structures (container_algo_traversal):	work-
ng on The data structures (container_argo_traversar).	
	•
	pre_order
	•
	post_order
	•
	level_orde
	These
	meth-
	ods
	take
	as
	pa-
	ram-
	e-
	ters
	a
	tree
	like
	data
	struc-
	ture,
	and
	а
	ver-
	tex.
	They
	will
	tra-
	verse
	the
ubtree rooted on this vertex in a specific order. They will return an iterator on the traversed vertices.	
	from
	from_ ∽openalea.
	⇒container
	→concarner

1

→traversal

→ *

(continued from previous page) 2 print_ 3 ⇔list(g. ⇔components 4 print 5 ⇔list(pre_ ⇔order(g, ⇔∟ →root1)) print 6 →list(post_ ⊶order(g, ⊶പ ⇔root1)) print_ 7 ⇔list(leve ⇔order(g, ⇔∟ →root1))

	Warning:
	On
	MTG
	data
	struc-
	ture,
	meth-
	ods
	that
	re-
	turn
	col-
	lec-
	tion
	of
	ver-
	tices
	al-
	ways
	re-
	turn
	an
	it-
	er-
ator rather than list, array, or set.	
	You
	have
	to
	con-
	vert
	the

it- er-	
er-	
a-	
tor	
into	
a	
list	t
if	
you	
want	
to	
dis-	
play	
it,	
or	
com-	
pute its	
length.	
iongui.	
	print le ceback (r
	lle " <st< td=""></st<>
Type	Error: (
Use	
rather	r:
>>>> >>>>	componer
	print co
[1,	2, 3, 4
3.5.	4 Full
ex-	
am-	
ple:	
how	V
to	
cre-	
ate	
an	
ΜΤΟ	G
ı from	a
	enalea.
→mt	g.
∽mt	g
→im	nport_
\hookrightarrow *	
(continues on next page)	

a) tree graph at internode scale b) multiscale tree graph (MTG)

Fig. 12: Figure 1: Graphical representation of the MTG file code_file2.mtg used as an input file to all examples contained in this page

 \rightarrow

→edge_

111

⇔_ ⇔edge_ ⇔type= ⇔'

113

↔ ' ↔ < ↔ ' ⊔ ↔)

(continued from previous page)

Authors

Se co te In th se tic wo	his ec- ion, ve
(3 re 5 ti 0 p a c te	3.6 Plant (3D re- con- struc- tion of plant ar- chi- tec-
Pr <co pr </co 	ia

	1
	the
	Plant-
	Frame
	vo-
	cab-
	u-
	lary
	that
	we
	use
	through-
	out
	vplants
	and
	give
	a
series of examples.	
1	
	3.6.1 The
	prob-
	lem
	set-
	ting
	PlantFrame
	is
	a
	method
	to
	com-
	pute
	the
	ge-
	om-
	e-
	try
	of
	each
	or-
	gan
	of
	a
	Plant
	Ar-
	chi-
	tec-
	ture.
	Geoemtri-

cal data is associated to some vertices of the architecture (aka **MTG**). But often, geometrical information is missing on some vertex. Constraints have to be solved to compute missing values.

The stages of the Pla

1.	
	Insert
	a
	scale
	at
	the
	axis
	level.
2.	
2.	Project
	all
	the
	con-
	straints
	at
	the
	finer
	scale.
3.	
	Apply
	dif-
	fer-
	ent
	Knowl-
	edge
	Sources
	(i.e.
	KS)
	on the
	MTG
	to
	com-
	pute
	the
	val-
	ues
	at
	some
	nodes.
4.	
	Solve
	the
	con-
	straints.
5.	*** **
	Visualise
	the
	ge-
	om-

	e- try us- ing a 3D Tur- tle.
	3.6.2 Wher are the data?
	The tu- to- rial pack- age comes with a few datasets. The data are in share/data/Plan di- rec- tory from the root.
(continues on next page)	> -> -> -> -> -> -> -> -> -> -
	→share

⇔data

 \rightarrow 'noylum2. ⊶mtg

3.6. PlantFrame (3D reconstruction of plant architecture)

(continued from previous page)

	Then,
	a
	file
	con-
	tain-
	ing
	а
	set
	of
	de-
	fault
	ge-
	0-
	met-
	ric
	pa-
	ram-
	e-
	ters
	is
	loaded
	to
	build
DressingData (walnut.drf)	а
	>
	>
	⇔>
	\hookrightarrow
	⊶drf
	⇔= <u> </u>
	⇔data/
	⇔ ⇔'walnut.
	⇔drf
	→ '
	>
	→>
	⇔>
	\hookrightarrow
	→dressing_
	⇔data <mark>_</mark>
	= م
	⊶dresser. ⇔dressing_
	⇔dressing_ ⇔data_
	⇒from_
	→file(drf)
	Another

solu-

parameters are missing. How to compute them? Use the Plant-Frame, а ge-0-

> work-Create the solver

metric solver

ing on multiscale tree structure.

⊶പ

mtg Documentation, Release 2.1.2

(continued from previous page)

Visualise
the
plant
in
3D
>
↔>
∽>
⇔ <u>⊔</u>
⇔pf. ⇔plot(gc=
→plot(gc=

(continued from previous page)

3.6. PlantFrame (3D reconstruction of plant architecture)

→plot(roots

⊶node=dict

⇔ີ

⇔∟

(continued from previous page)

user/image

user/image

The mtg monopodial_plant.mtg is loaded. То draw it, just run: > ⇔> ⇔> ⊶പ ⊶pf ⇔=ີ

→=_ →plantframe →PlantFrame → TopDiamete → 'diam

(continues on next page) (\downarrow)

You can also define a function to compute

The diameter is defined for each vertex of the MTG. То take into ac-

3.7 Using MTG within VisuAlea

Nodes have been implemented within VisuAlea

	SO
	as
	to
	ma-
	nip-
	u-
	late
	MTG
	files.
	See
	Ope-
	nAlea
	wiki
	for
	ex-
amples and details about VisuAlea.	
	The
	fol-
	low-
	ing
	dataflows
	il-
	lus-
	trates
	how
	MTG
	files
	can
	be
	ma-
	nip-
	u-
	lated
	within
	Vi-
	suAlea.
Nuslo All	
Contract Frage Carlos Car	
Image: The state of the st	

Fig. 13: MTG manipulation within VisuAlea

3.8 File
syn-
tax

Todo: revise the entire document to check tabulation of the examples

3.8.1	Gene
con-	
ven-	
tions	

In gen-

eral, words can be separated by any combination of whitespace characters (SPACE, TAB, EOL).

In certain files, TABs or EOL are meaningful (e.g. MTG coding files), and therefore are not considered as a whitespace character in these files.

	Comments
	may
	be
	in-
	tro-
	duced
	any-
	where
	in
	а
	file
	us-
	ing
	the
	sharp
	sign
	#,
	mean-
	ing
	that
	the
	rest
	of
	the
line is a comment. In some files, block comments can be introduced by bracketing the comment text with (# and #).	
	Files
	used
	by
	AML

an access them. All references to files from within a file or from AMI, must be given explicitly. Deferences to files	can be lo- cated any- where in the UNIX hi- er- achi- cal file sys- tem, pro- vided the user
can access them. All references to files from within a file or from AML must be given explicitly. References to files must always be made relatively to the location where the reference is made.	

In various files, userdefined names must be given to objects, attributes, etc. Unless specified other-

wise, names always consist of strings of alphanumeric characters (including underscore '_') starting by a non-numeric character. A name may start by an underscore. Some names correspond to reserved keywords. Since reserved keywords always start in AMAPmod with uppercase letter, it is advised, though not mandatory, to define user-defined names starting with lowercase letter to avoid name collision.

Coding strategy

Α plant multiscale topology is represented by а string of characters (see 3.2.2). The string is made

up of a series of labels representing plant components (a label is made up of an alphabetic character in A-Z,a-z and a numeric index) and of symbols representing either the physical relationships between the components. Character '/' is used for decomposition relationship (see next paragraph), '+' is used for branching relationship and '<' for successor relationship. For example:

/ ⇔I1
↔ <i2 ↔<i3< td=""></i3<></i2
\hookrightarrow < I 4 + I
-→ <i6< td=""></i6<>
is
a
string
rep-
re-
sent-
ing
6
com-
po-
nents
with
la-
bels
I1,
Ι2,
13,

I4, I5, I6. I1to I4 are a sequence of components defining an axis which bears a second axis made up of the sequence of components I5 and I6. In this string every component is connected with at most one subsequent component (either by a '<' or by a '+') As illustrated by this example, the name of an entity is built by concatenating the consecutive entity labels encountered while moving along the plant structure from the plant basis to the considered entity.

secutive entity labels encountered while moving along the plant structure from the plant basis to the considered entity. For example, consider the decomposition of a plant in terms of axes. Assume this plant is made of 3 axes: axis A1 bears axis A2, which itself bears axis A3. Then, the respective names of the axes are:

/ →A1 / →A1+A2 / →A1+A2+A3
Symbol '+' refers
to
the type
of
con-
nec-
tion

between A1 and A2, A2 and A3 respectively. Now, consider

> <u></u>→U90 /

another plant considered at the scale of growth units. A growth unit U90 bears a growth unit U91 which is itself followed on the same axis by U92. The respective names of these growth units are

→U90+U91 →U90+U91 **→**<U92 These two examples illustrate how to define the name of plant entities when only one scale of description is considered. When several scales are considered, this strategy can be extended as explained in section

> Assume for

in-

3.2.2.

	stanc
	that
	axis
	A1
	of
	the
	pre-
	vi-
	ous
	ex-
	am-
	ple
	is
	com-
	pose
	of
	3
	con-
	sec-
	u-
	tive
wth units and that axis A2 is borne by the second growth units of A1. Then the name of A2 is defined as	

/ ↔A1/ ↔U1 ↔<U2+A2

Relative names

Every name of an entity is thus the concatenation of а series of pairs (relation sym-

· nome - relation	lobal relation	lobal relation	lobal relation	. label relation label
-1000000000000000000000000000000000000				

bol,label)

Let
us
con-
sider
any
pre-
fix
р
of
a
name
n
of
an
en-
tity
Х
of
the
plant,
made
of
а
se-

n

ries of pairs (relation label). According to the recursive construction of entity names, this prefix defines the name of an entity y on the path from the plant basis to the entity with name n. The name of x has thus the form:

⇔p⊔
⇔m
where
m
is
a
se-
ries
la-
bel
re-
la-
tion
la-
bel
re-
la-
tion.
En-
tity
X

has ab-

so-

lute

Examples

Examples
/
⇔S1/
→A1/
→E1+A3
⇔has
⇔relative
⇔name_
\hookrightarrow /
⇔A1/
→E1+A3
⇔in_
⇔position_
$\hookrightarrow /$
⇔S1 ∕
/ ⇔S1/
\leftrightarrow A1/
→E3+A1/
→E4+S1/
→U2/
→E3+U1/
→E5+U4/
→E4
⇔has
⇔relative
⇔name_
↔+U1/
\hookrightarrow E5+U4/
⇔E4
⇔in
⇔position_
\leftrightarrow /
⇔S1/
⊶A1/ ⊶E3+A1/
$\hookrightarrow E3+A1/$ $\hookrightarrow E4+S1/$
\rightarrow U2/
→E3

Coding files

The coding of a plan

a header which con-

•

tains а description of the coding parameters, • the code of the plant architecture.

The header contains

• the set of all entity classes used in the MTG description, • а detailed description of the topologi-

	cal prop- er- ties of these classes,
	and the set of all at- tributes used for any en- tity in the plant de- scrip- tion.
	In a MTG cod- ing file, TABs are mean- ing- ful. They cor- re- spond to col- umn sep- a- ra- tors. Con-
a spreadsheet editor. If a sharp '#' is inserted on a line, every	se-

quently, a MTG coding file should be edited using a spreadsheet editor. If a sharp '#' is inserted on a line, every character until the next TAB on the same line is considered as a comment and is not interpreted.

Header

	General pa- ram- e- ter sec- tion
	For
	his-
	tor-
	i-
	cal
	rea-
	sons,
	two
	forms
	of
	plant
	ar-
	chi-
	tec-
	ture
	cod-
	ing
	have
	been
	de-
	vel-
	oped,
	de-
	noted
M.D. in annihila fan annandant	

FORM-A et FORM-B. FORM-A is the most general and should be employed. FORM-B is available for ascendant compatibility with former coding forms employed in the AMAP laboratory [Rey et al, 97]. Whatever the coding form used the plant built by AMAPmod is the same. The form of the coding language must be specified in the coding file by specifying either FORM-A or FORM-B following the keyword CODE, in the next column, for example : CODE: FORM-A This definition is mandatory.

Class definition section Classes must then be declared. This

is done in а section beginning with keyword CLASSES. Then а line is

defined for each class of the MTG. The first column, entitled SYMBOL, contains the symbolic character denoting a class used in the MTG. This symbol most be an alphabetic character (either upper or lower-case letter). Two classes either at identical or different scales must have different symbolic characters. The second column, entitled SCALE, represents the scale at which this class appears in the MTG. There are no a priori limitation related to the number of classes, however, these must be consecutive integer greater or equal to 0. Scale i, i>1, can only appear if scale i-1 has appeared before.

	tire
	database
	and
	is
	de-
	fined
	by
	def-
	i-
	ni-
	tion
	at
	scale
	0.
	Key-
	word
	DE-
the types of decomposition that can have a vertex (i.e. a plant constituent) : CONNECTED, LINEAR, FREE, NONE. Key word CONNECTED means that the decomposition graph of	
is connected. Keyword LINEAR means that the decomposition graph of a vertex at the next	

COMPOSITION defines the types of decomposition that can have a vertex (i.e. a plant constituent) : CONNECTED, LINEAR, <-LINEAR, +-LINEAR, FREE, NONE. Key word CONNECTED means that the decomposition graph of a vertex at the next scale is connected. Keyword LINEAR means that the decomposition graph of a vertex at the next scale is a linear sequence of vertices. Besides, if this all the constituents of this sequence are connected using a single type of edge (respectively < or +), then keyword <-LINEAR et +-LINEAR can respectively be used. Keyword FREE allows any type of decomposition structure while keyword NONE, specifies that the components of a unit must not be decomposed. Column INDEXATION is not used. Column DEFINITION must be filled with value EXPLICIT if any entity of that class has feature values (i.e. attributes). IMPLICIT should be used otherwise.

This
sec-
tion
is
manda-
tory.
Topological
con-
straints
sec-
tion
Topological
con-
straints
are
de-
scribed
in
the
next
sec-
tion,
be-
gin-
ning
with
key-

156

⊶<∟

fines for a pair of classes at the same scale one allowed type of connection. It contains 4 columns, LEFT, RIGHT, RELTYPE, and MAX. For any class in column LEFT, the column RIGHT defines a list of class (appearing at the same scale) which can be connected to it using a connection of type RELTYPE. The maximum number of connections of type RELTYPE that can be made on an entity from column is defined in column MAX. If column MAX contains a question mark "?", the number of connections is not bounded. If a class does not appear in the column LEFT, then entities of this class cannot be connected to other entities in the MTG.

		DESCRIPI
		LEFT
		↔_
		പ
		⇔RIGHT
		⇔⊔
		⇔⊔
		↔RELTYP
		⊶MAX
		U
		⇔ ⇔
		→u,
		⇔I_
		_ +_
		⇔⊔
		⇔?
		\hookrightarrow
		U
		⇔⊔
		⇔∟ ⇔U,
		⇔I
		\hookrightarrow
		⊶<_
		⇔⊔
		⇔∟
		<u></u>
		I
		⇔
		⇔_ ⇔I_
		→±u ↔u
		⇔∟
		\hookrightarrow
		⇔?
		\hookrightarrow
		E
	(continues on next page)	→ ()
		⇔∟ ⇔E⊔
Chapter 3.	MTG User Guide	→⊔⊔ ↔⊔
		⇔L
		_ ∽

(continued from previous page) Е ⊶പ ⊶പ ⇔Ε∟ ⇔∟ ⇔∟ \rightarrow + ⊶പ ⇔⊔ -→1 Let us resume on the example from the above CLASS section with its DE-SCRIP-TION section. Since class P does not appear in the left column, a P cannot be connected to any other entity at scale 1, e.g. to any other P. Entities of type U can be connected to entities of either type I or U, for any of the connection types < et +. An entity of type U can be connected by relation + to any number of Us or Is. However, they can only be connected by relation < to at most one entity of either type U or I. Entities of type I cannot be connected by relation < to any type of entity, while

they can be connected to other I's by relation +. At scale 3, any E can be connected to only one other E by either

relation + or <. This section is mandatory but can contain no topology description.

section The third and last part of

the header

Attribute

contains а list of names defining the features that can be attached

to plant entities and their types. This part begins with keyword FEATURES. Thelist of names appears in column NAME and the corresponding types in column TYPE. The name of an attribute might be either a reserved keyword (see a list below) or a user-defined name. The types of attributes can be INT (integer), REAL (real number), STRING (string of characters from {A...Za...z-+. /} and which are bounded to 14 characters max), DD/MM, DD/MM/YY, MM/YY, DD/MM-TIME, DD/MM/YY-TIME (Dates), GEOMETRY (geometric objects defined in a .geom file), APPEARANCE (appearance objects defined in a .app file), OBJECT (general object defined in generic type of file).

(continued from previ	ous page)
	TopDiameter
	⇔REAL
	geom
	\hookrightarrow
	\hookrightarrow
	⇔_ ⇔GEOMETRY_
	\hookrightarrow
	\hookrightarrow
	⇔⊔ go om1
	⇔geom1. ⇔geom
	appear_
	→APPEARANCI
	\hookrightarrow
	⇔material.
	⇔app
	Certain
	names
	of
	at-
	tributes
	are
	re-
	served
	key-
	words.
	They all
	start
	by
	an
	upper- case
	let-
	ter.
	If
	they
	ap-

pear

in

the feature list, they must be in the same order as in the following description. Alias, of type STRING (formerly ALPHA), must come first if used. It allows the user to define aliases for plant entities to simplify some code strings. Date, is used to define the observation date of an entity. NbEl (NumBer of ELements), defines the number of components on any entity at the next scale. Length is the length of an entity. BottomDiameter et TopDiameter respectively define the bottom and top stretching values of a tapered transformed that is applied to the geometric symbol representing this entity (for branch segments associated with cylinder as a basic geometrc model, this defines cone frustums). State of type STRING defines the state of an entity at the time of observation. This state can be D (Dead), A (Alive), B (Broken), P (Pruned), G (Growing), V (Vegetative), R (Resting), C (Completed), M (Modified). These letters can be combined to form a string of characters, provided they consistent with one another. Such state descriptions are checked during the parsing of the MTG and possible inconsistencies are detected.

	sec-
	tion
	is
	manda-
	tory
	but
	can
	con-
	tain
	no
	fea-
	tures.
Coding section	
	The
	sec-
	tion
	con-
	tain-
	ing
	the
	code
	of
	а
	MTG
	starts
	by
	key-
	word
	MTG.
	The
	next
	line
	con-
	tains
	а
	list
	of
	col-
	umn
	names.
	In
	the
	first
	col-
	umn,
	the
	key-
	word
	ТОРО

TOPO in-

dicates that

this column and the next unlabelled column are reserved for the topological code. On the same line, all the names that appear in the FEATURE section of the header must appear, in the same order, one column after the other, starting with the first feature name in a column sufficiently far from the TOPO column to leave enough space for the topological code (see examples below).

The topological code must necessarily start by а *'*/' like in: →P1/ →A1. \hookrightarrow . \hookrightarrow . \hookrightarrow It can spread on all the columns before the first feature column. Since entity names have а

definition, а plant description can be made on а single line.

However, if one wants to declare feature values attached to some entity, the plant code must be interrupted after the label of this entity, attributes must be entered on the same line in corresponding columns, and the plant code must continue at the next line.

Note that in the current implementation of the parser, an entity which has no features uses ob-

viously 0 bytes of memory for recording features, however, assuming that the total number of features is F, if an entity has at least one feature value defined, it uses a constant space F^*14 bytes to record its feature (whatever the actual number of features defined for this entity).

Example

Here	
is	
an	
ex-	

⇔⊔ ⇔⊔

ple of a cod- ing file co- re- spond- ing to plant it has trated on Fig- ure 4 4			am-
(outines on next page)			
соптания и полнания и полнани			of
continues on neuropsystems of the syntax to			
Leveneus or new page File syntax 163			
continue on net reprint (continue on net reprint) (continue on net reprin			ing
Contrasts on next parts The syntax Tell sy			
continues on acceptor The syntax 103 The syn			
ing plant il- lus- traded on Fig- ure 4 CODE: Continues on setting: Fig- ure 4 Continues on setting: Fig- ure 4 Continues on setting: Fig- ure 4 Continues on setting: Fig- Ure Continues on setting: Fig- Ure Continues on setting: Fig- Ure Continues on setting: Fig- Ure Continues on setting: Fig- Ure Fig- Ure Continues on setting: Fig- Ure Fig- Ure Continues on setting: Fig- Ure Fig- F			
Continues on restription			ing
recontinues on next press Lise trated on Fig- ure 4. CODE t_ TORM- A CASSES: STRED_ TORM- A CASSES: STRED_ TORM- A CASSES: STRED_ TORM- A CASSES: STRED_ TORM- A CASSES: STRED_ TORM- A CASSES: STRED_ TORM- TORM- A CASSES: STRED_ TORM- TORM			
Londinues on next prept Londinues on next pre			plant
Image: continues on next pace			
(continues on next page File syntax 163			
(continues on act page)			
continues on next page			
4- CODE: FORMA CLASSES: SYMBOL: FOCME FORMA CLASSES: SYMBOL: FOCME FORMA CLASSES: FOCME FORMA CLASSES: FOCME FORMA CLASSES: FOCME FORMA FORM			
CODE: CO			
(continues on next page)			
(continues on next page)			CODE:
(continues on next page)			⇔_
(continues on next page) (continues on next			⇔_ ⇔E∩PM-
(continues on next page) (continues on next			
(continues on nert page File syntax 163			CLASSES:
(continues on next page)			SYMBOL
(continues on next page File syntax 163			⇔ <u>u</u> ⇔conte
continues on next page Tille syntax 163			
continues on next page . File syntax 163			⇔
(continues on next page . File syntax 163			→DECOMP
(continues on next page)			
continues on next page . File syntax 163			→_ →INDEXA
→DEFINI →S. →S. →CEFINI →S. →CEFINI →S. →CEFINI →S. →CEFINI →CEFINI →S. →CEFINI →S. →CEFINI →S. →CEFINI →S. →CEFINI →S. →CEFINI →S. →CEFINI →S. →CEFINI →CEFINI →S. →CEFINI →CEFINI →S. →CEFINI →CEF			⇔_
(continues on next page) File syntax 163			⇔DEFINI
(continues on next page) File syntax 163			\$
(continues on next page) (continues on next			⇔_
(continues on next page) (continues on next page) A. File syntax 163			
(continues on next page)			
(continues on next page)			⇔
(continues on next page) S. File syntax 163			∽FREE
(continues on next page) A. File syntax 163			
(continues on next page) → FREE_ → _ → _ → _ → _ → _ → _ → _ →			
(continues on next page) → → → → → → → → → → → → → → → → → → →			
(continues on next page) → IMPLIC P_ → I → I → I → I → I → I → I → I			
(continues on next page) → IMPLIC P_ → □ → □ → 1_ → 1			
$\begin{array}{c} P_{\downarrow} \\ \hline \\ $			
(continues on next page) → 1 → 1 → 1 → 1 → 1 → 1 → 1 → 1			
G. File syntax 163 ↔		(continues on next nage)	\hookrightarrow
. File syntax 163 ↔		(continues on next page)	⇔∟
163 \rightarrow 163 \rightarrow 163 \rightarrow 163			
	. File syntax	163	

(continued from previous page)

(continued from pre	vious page)
	/
	/ ←P1/
	\rightarrow A1/
	↔U1
	↔ <u2< th=""></u2<>
	→ <u3+a2< th=""></u3+a2<>
	/
	⇔P1/
	⇔A1/
	∽U1
	⇔ <u2< th=""></u2<>
	→ <u3+a2 <="" th=""></u3+a2>
	→U1
	↔ <u2< th=""></u2<>
	↔ <u3+a3< td=""></u3+a3<>
	/ ⇔P1/
	$\rightarrow P1/$ $\rightarrow A1/$
	↔A1/ ↔U1
	↔ <u2< th=""></u2<>
	↔ <u3+a2 <="" th=""></u3+a2>
	→U1
	↔ <u2< th=""></u2<>
	→ <u3+a3 <="" th=""></u3+a3>
	→U1+S1
	/
	⇔P1/
	⇔A1/
	⇔U1
	↔ <u2< th=""></u2<>
	↔ <u3+a2 <="" th=""></u3+a2>
	↔U1
	-→ <u2 -→<u3< th=""></u3<></u2
	$\hookrightarrow < U3$ $\hookrightarrow < U4$
	→<04
	/ ←P1/
	\rightarrow P1/ \rightarrow A1/
	→U1
	↔ <u2< th=""></u2<>
	↔ <u3< th=""></u3<>
	↔ <u4< th=""></u4<>
	In
	this

example, certain names use frequently the same

fi	ore- fix
w	which
с	can
b	be
la	ong
(1)	this
b	oit
0	of
с	code
с	con-
tains 225 characters). We are going to introduce successively different strategies in order to simplify this first coding scheme.	

The first simplification consists of giving а name (alias) to an entity name which is used fre-

quently in the name of others.

(continues on next page)

(continued from previous page)	1
	/
	⊶P1/ →A1/
	→A1/ →U1
	-→ <u2< td=""></u2<>
	-→ <u3< td=""></u3<>
	<u></u> → <u4< td=""></u4<>
	An
	alias
	can
	be
	as-
	so-
	ci-
	ated
	with
	а
	given
	en-
	tity
	by
	defin-
	ing
	its
	name
	in col-
	umn
	Alias.
	This
	name
can then be reused in the topological section by enclosing it between parentheses. If an alias is used as a prefix of	nume
can then be reased in the topological section by her bar of the between parentineses. In an analysis used as a prenk of	

can then be reused in the topological section by enclosing it between parentheses. If an alias is used as a prefix of an entity, the code of this entity must be given relatively to this alias. For entity A2, for instance, we can see that its name is /U1 < U2 < U3 + A2 relatively to position A1 which is an alias for /P1/A1. The absolute name of A2is thus, /P1/A1/U1 < U2 < U3 + A2. The code part of this file has now a size of 173 characters, i.e. 78% of the initial code.

The code of the MTG can be further simplified. We can avoid completely

the repetition of bit

of codes. Assume that entity y has a code of the form XY where X represents the code of some entity x. For example X is /P1/A1 and Y is /U1<U2<U3+A2 in the previous example. If X already appears in column of the topological section, then we may consider that if subsequently Y appears at a different line, but shifted to the right by one column, then Y is actually follows X which is thus its prefix. Then Y is a relative name with respect to position X. In our example, this leads to

(continued from previous pag	e)
	⇔ _
	⇔ ⇔
	⇔U1
	<u></u> ← < U2
	⇔ <u3+a2< td=""></u3+a2<>
	↔
	⇔u ⇔u
	\hookrightarrow
	⇔#_ ⇔code_
	⇔code
	⇔de
	$\hookrightarrow Y$
	The
	fact
	that
	the
	code
	of
	у
	is
	shifted
	one
	col-
	umn to
	the
	right,
	al-
	lows
	us
	to
	in-
	ter-
	pret
	/U1 <u2<u3+a< td=""></u2<u3+a<>
(1, 2, 3)	as
the continuation of /P1/A1 leading to the absolute name /P1/A1/U1 <u2<u3+a2 actually="" code="" is="" of="" td="" the="" which="" y.<=""><td></td></u2<u3+a2>	
	Ву
	ap-
	ply-
	ing this
	new
	rule
	on
	the
	com-

plete

(continued from previous page)

3.8. File syntax

(continued from previous page)

Now the number of characters used in the code is now 63 and corresponds to 28%of

the ini-

tial code. However, this compressed code raises two new problems. The first problem is that the number of columns necessary has greatly increased. The second is that it is difficult to recognise the structural organisation of the plant in the way the code displays it.

code starts with character ^ in a given cell, the current relative code must be interpreted with respect to the position whose code is the latest code defined in the same column just above the current cell. Using the ^ notation:

s I

the

total number of columns required and best reflects in the code the botanical structure of the plant. Entities of order i are defined in column i which greatly improves the code leagibility. Finaly, the number of characters used is 69, i.e. 31% of the initial extended code.

s c a s r c c c c c c c c c c c c c c c c c c	se- ies of con- sec- i- ive en- i- ies must be coded, which pro- luces ong ines of
	of code

just as this one:

A1/
→ U87
<u88< td=""></u88<>
<u89 td="" ⊆<=""></u89>
<u>→</u> <u90< td=""></u90<>
<u></u> <u91< td=""></u91<>
⊶ <u92 ⊶<u93+a2< td=""></u93+a2<></u92
→ <u93+a2< td=""></u93+a2<>

Such a

A1/ →U87 →< → <u93+a2< th=""></u93+a2<>
U87< <u93 is a syn- tac- tic short- hand for U87<u89<u90< th=""></u89<u90<></u93
Symbol ++ is de- fined sim- i- larly: U87++U93 is a short- hand for U87+U89+U90
Note that in such cases, the en- ti- ties im- plic- itly de- fined can- not have at- tributes: for in- stance, the

	code:
	TOPO
	⊶പ
	\hookrightarrow
	⇔ <u>∟</u>
	⊶diam_
	⇔_ ⇔_
	`⊔ ⇔∟
	∽flowe
	/
	⊶A1/
	⇔ U87
	-→<
	<u></u> → <u93< td=""></u93<>
	⇔⊔
	⇔⊔ ⇔⊔
	⊶10.
	⇔3 <u> </u>
	⇔⊔
	⊶പ
	⇔⊔
	⇔2
	Means
	that
	an
	axis
	A1
	is
	made
	of
	а
	se-
	ries
	of
	7
	growth
	units,
	la-
	belled
	from
	U87
	to
	U93
	and
	that
as a diameter of 10.3 and bears 2 flowers. In some cases, we want to express that the attributes are shared by all	U93
ntities. This can be expressed as follows:	
	TOPO
	uoro ⇔_
	↔u
(continues on next page)	⇔u
	⊶diam

⊶∟ ⊶flowers

__ ۲

⊶പ

	(continued from previous page)	
	/	/
		→A1/
		⊶U87
		⊶<.
	د د	↔ !!</td
		÷40⊃
		⇔⊔
		⇔⊔ ⇔⊔
		⇔∟
		_ ∟
		⊶പ
	د	∽ 1
	w	which
	n	neans
	tł	hat
		ev-
	e	ery
	g	growt
	u	inits
		rom
		J 87
	to	
		J 9 3
		nas
		ex-
	a	ictly
	1	
		lower
		No-
		a-
		ion
	+	⊦.+
	is	S
	d	le-
	fi	ined
larly.	SI	im-
	н	Here
		ol-
	10	ows
	tł	he
		com-
		olete
	P Cl	code
	0	of
		olant
	P O	of
	F	Fig-
	1	ire
	4	
	T	:

(continued from previous page) U \hookrightarrow പ ⇔Ս∟ ⇔∟ ⊶പ ⊶+<u></u> പ ⇔⊔ ⇔? \hookrightarrow FEATURES: NAME പ ⇔⊔ ⊶പ ⇔TYPE MTG: TOPO / →P1/ ⊶A1 ^ ↔/ →U1 **→**<U2 ш. പ ⊶പ ⊶പ ∽ີ ⇔⊔ ⇔⊔ ⊶പ ⇔+S1 ш. ⊶പ ∽ີ ⇔⊔ ⊶+S2 ц. ⊶പ ⇔ີ ⊶പ →+A1/ ⇔U1 ^ \hookrightarrow ⊶<U3 ш. ∽⊔ ⊶പ ⇔⊔ →+A2/ →U1

 $(\text{continues on next page}) \qquad \stackrel{\hookrightarrow}{\hookrightarrow} < \bigcup 3$

Examples of coding strategies in different classical situations

Non linear growth units

Until now we have only used linear growth units, i.e. entities whose decomposition in а linear

set of entities. It is possible to define branching growth-units, which are not a part of an axis. The plant illustrated in Figure 4-2 illustrates such non-linear entities.

(continued from pre	evious page)
	MTG:
	TOPO
	/
	⇔F1/
	⇔U1
	-→ <u2< td=""></u2<>
	⇔
	⇔_
	⇔_
	↔+U3
	<u>→</u> <u4< td=""></u4<>
	⇔ <f2 <="" td=""></f2>
	⇔U1
	
	\hookrightarrow
	⇔
	↔+U2
	ш.
	⇔∟
	\hookrightarrow
	⇔ <u>∟</u>
	⇔ _
	⇔
	⇔
	⊶∟ ⇔+U3
	→+U5+F3
	→U1

Sympodial plants

Sympodial
plants
of-
ten
con-
tain
ap-
par-
ent
axes
made
up
of

series of modules (or axes). At a macroscopic

scale, the plant is described in terms of apparent axes connected to one another (Figure 4-3) depict a typical sympodial plant:

(continued from previous page) A \hookrightarrow ⊶പ ⊶2<u></u> ⇔∟ ⊶പ \hookrightarrow -><− →LINEAR ⊶പ ⊶പ ⊶പ ⊶FREE പ \hookrightarrow ⇔ບ \hookrightarrow IMPLICIT A ⇔⊔ ⊶പ **⇔**2 \hookrightarrow ⊶പ \hookrightarrow -><− \rightarrow LINEAR ⊶പ ∽ີ ⇔∟ ⊶FREE ⇔⊔ ∽∟ ⊶പ →IMPLICIT DESCRIPTION LEFT ⊶പ \hookrightarrow ⊶പ ⇔RIGHT ⇔⊔ \hookrightarrow →RELTYPE ⊶MAX S ⇔⊔ ⊶പ ⇔S⊔ ⇔⊔ ∽ີ ⊶+ ⇔⊔ ⊶പ **→**? \hookrightarrow A ⇔ີ (continues on next page) ⊶പ →A, ⊶a⊔ 189 _+__

⇔⊔ ⊶പ -→1

	am- ple the role of ^
	which
	en-
	ables
	us
	to
	pre-
	serve
	the
	struc-
	ture
	of
	the
	plant
	into
the code itself. Indeed, apparent axes appear in columns corresponding to their apparent order.	

Dominant axes

Similarly,
dom-
i-
nant
axes
in
a
plant
can
be
iden-
ti-
fied
us-
ing
macro-
scopic
units
Fig-
ure
4-
4
il-
lus-

trates how to code dominant axes:

Whorls and supra-numerary buds

Whorls and supranumerary buds can be encoded in several ways. One possible solution is to use

⊶⊔ ⊶1

3.8. File syntax

	Entities
	Е
	de-
	note
	in-
	tern-
	odes.
	Each
	in-
	tern-
	ode
	con-
	tains
	а
	whorl,
	whose
	el-
	e-
	ments
	are
	de-
	noted
	by
	class
V. Each V can itself be decomposed into several supranumerary positions, denoted by class N. Then on each position,	
a growth unit (class U) can be described. Note that within a whorl E. V positions are not connected to one another.	

V. Each V can itself be decomposed into several supranumerary positions, denoted by class N. Then on each position, a growth unit (class U) can be described. Note that within a whorl E, V positions are not connected to one another. They are simply considered as one part of the whorl. This is also true for supra-numerary positions.

Plant growth observation

Plant growth can be observed and described using MTGs. То this end, observation dates

(continues on next page)

(continues on next page)

206

mation.

⊶പ

Here, the index of the entity is used to denote the position of an element is used to record the height of this position with respect to the basis of the corresponding axis.

(continued from previous page)
(A91)
⇔ <u>⊔</u>
\hookrightarrow
⇔# <u></u> _
→Back
⇔to_
⇔axis_
→borne」
→at」
→position
→L100
\hookrightarrow
→L10+X92
\hookrightarrow
$ \begin{array}{c} \hookrightarrow_{\square} \\ \leftrightarrow / \end{array} $
\leftrightarrow / \leftrightarrow L25+X92
↔LZ J+X 9Z
\hookrightarrow
⊖
\leftrightarrow
\hookrightarrow .
\hookrightarrow .
\hookrightarrow .
\hookrightarrow

Description of a plant from the extremities

On some plants, it is easier to described branches starting from the

bud of the stem on proceeding down-

ward to the stem basis. This is the case for instance, for large trees where biological markers of growth, nodes, growth unit limits, sympodial module, etc., are more leagible near the branch extremities. Here follows a strategy to code the plant in such a case.

-→<__ ->__ ->__ ->_1

3.8. File syntax

_ # __

A second solution consists of us-

(continues on next page)

→CONNECTED

 \hookrightarrow IMPLICIT

P ⊶പ ⊶പ ⇔1<u></u> പ <u>∟</u> ∼

⇔ີ പ

 \hookrightarrow

⇔⊔ ⊶പ

⊶പ

__\$ ⊶പ ⇔∟ ⊶0 <mark>_</mark> ⊶പ ∽ີ ⇔FREE ⇔∟ ⊶പ ⇔∟ ⊶FREE \hookrightarrow ⇔∟ \hookrightarrow

→DECOMPOSI

→INDEXATION

→ DEFINITION

(continued from previous page) U \hookrightarrow ⊶പ ⊶2<u></u> ⇔∟ ⊶പ \hookrightarrow -><− →LINEAR പ ⊶പ ⊶പ ⊶FREE പ \hookrightarrow ⇔⊔ ⇔EXPLICIT Е ⇔⊔ ⊶പ **⊸**3∟ \hookrightarrow ⊶പ ⊶NONE ⇔ப ⇔⊔ \hookrightarrow →FREE ⊶പ ∽∟ പ ⇔EXPLICIT DESCRIPTION LEFT \hookrightarrow \hookrightarrow പ ⇔RIGHT \hookrightarrow_{\Box} ⊶പ →RELTYPE ⊶MAX U \hookrightarrow_{\Box} \hookrightarrow ⇔Ս∟ ⇔ີ ∽∟ ⊶+<u>∟</u> ⊶പ ⇔ບ **⇔**? \hookrightarrow U \hookrightarrow ⇔⊔ ⇔Ս∟ (continues on next page) ⊶പ ⇔⊔ \hookrightarrow 215 _><

⇔⊔ ⇔⊔ ⇔1

(continued from previous page)

0-
met-
ric
mod-
els
as-
so-

ciated with geometric entities and to compute their geometric parameters when inference algorithms cannot be applied. These data are basically constant values (see the table below) and may be redefined in the dressing file. If no dressing file is defined, default (hard-coded) values are used (see table below). The dressing file .drf, if it exists in the current directory, is always used as a default dressing file.

	The dress- ing data
	en-
	tries can
	be
	sub-
	di- vided
	into
	3
	cat-
	e- gories
	(any
	of
	these
	cat-
	e- gories
	can
	be
mitted).	

omitted).

Definition of basic geometric models associated with plant components

A graphic model can be associated with a component

in boldface characters):

following way (all keywords are 1. First, а set of all the basic ge-0metric models of interest must be defined. This

in the

is done by specifying a file containing the geometric description of these models (for a definition of the syntax of geometric models, refer to the annexe section):

The ef-

fect
of
these
lines
is
to
load
the
ge-
0-
met-
ric
mod-
els
that
are
de-
fined
in
files
file1.geom

in file ../../file2.geom. Each geometric model defined is these files is associated with a symbolic name. If the same symbolic name is found twice during the loading operation, an error is generated and should be corrected.

2.

and

Any symbolic name (like internode) can then be associated with а component using the

class of the component as follows:

Class $\hookrightarrow I_{\square}$ ب= ⇔inter

(continues on next page)

(continued from previous page)

	where
	Ι
	cor-
	re-
	sponds
	to
	а
	class
	name.
	This
	means
	that
	all
	the
	ver-
	tices
	of
	class
	Ι
	will
	have
	a
	ge-
	om-
defined by the geometric model internode. Note that class I does not necessarily correspond to a valid class of a G (however, it should be a alphabetic letter in a-z,A-Z).	

Alternatively,
to
al-
low
for
as-
cen-
dant
com-
pat-
i-
bil-
ity
with
pre-
vi-
ous
ver-
sions
of
AMAP-
mod,
it
is

possible to directly refer to geometric models defined in .smb files. In this case, the set of geometric models corre-

sponds to the files contained in directory SMBPath and a geometric model can be loaded in AMAPmod by identifying a smb file in this directiry. This is done as follows in the dressing file:

SMBPath _=_ \hookrightarrow . \hookrightarrow . $\rightarrow /$ \hookrightarrow . \hookrightarrow \rightarrow / →databases \hookrightarrow SMBFiles SMBModel →internode2 __= →nentn105 SMBModel ⇔leaf3<mark>_</mark> __= →oakleaf Here, ge-0metric models internode2 and are respectively associated with polygon files nentn105.smb and oakleaf.smb which are both located in directory ../../databases/SMBFiles. Like exposed above, SMB ge-0-

	ric
	mod-
	els
	can
	then
	be
	as-
	so-
	ci-
	ated
	with
	ver-
	tex
	classes:
	Class
	⇔J
	=
	⇔internode
	Class
	⇔F∟
	⇔leaf3
	Then,
	global
	shapes
	can
	be
	de-
	fined
	for
	branches.
	This
	is
	done
	us-
	ing
	the
	fea-
	ture
	"cat-
	e-
	gory"
	de-
	fined
	for
	branches.
The category of a branch is defined by the category of its first component. Note that the category may depend on the	oranenes.
cale at which a branch is considered. For each category, the user can associate a 3 dimensional shape as a 3D bezier unit. The shape of the branch is then fit to the general shape associated with its entergory.	

scal curve. The shape of the branch is then fit to the general shape associated with its category.

> Assuming а set

	of
	Bezier
	curves
	are
	spec-
	i-
	fied
	in
	а
	file
	bezier-
	shapes.crv
	(for
	ex-
	am-
	ple),
	we
	can
	as-
	SO-
	ciate
branch categories with the Bezier curves using the following notation:	

BranchPatter __= \hookrightarrow . \hookrightarrow ↔/ →Curves/ ⇔beziershap ⇔crv Form ⇔category_ __= ⇔curve2 Note that the file beziershapes.crv is included, using а path relative to the difile itself is located. Alternatively, an absolute filename could be given. The structure of the file beziershapes.crv is discribed in section 4.4.

Definition of virtual elements

(continues on next page)			Components
spossible to define these new symbols as follows: spossible to define these new symbols as follows: spossi			
pear is in in MTG Ge- ion ion ion ion ion ion ion ion ion ion			
spossible to define these new symbols as follows: spossible to define these new symbols as follows: spossi			
s possible to define these new symbols as follows: s possible to defi			
s possible to define these new symbols as follows: s possible to defi			
de- scrip- ion (a) be added to a MTG (eg leaves, fow- ers or futis). It spossible to define these new symbols as follows: spossible to define these new symbol			
spossible to define these new symbols as follows: spossible to define these new symbols as follows: spossi			
ion can be added to a MTG (e.g. leaves, flow- ers or fruis), I t spossible to define these new symbols as follows: spossible to define these new symbols as fo			
continues on next ends continues on next ends contin			
kee deddeddeddeddeddeddeddeddeddeddeddedd			
exercises of a stand o			
icontinues on arx representation of the series of the seri			
a MTG (e.g. leaves, flow- ers or fruits). It geometry 			added
MTG (e.g. leaves, flow- ers or frius). It possible to define these new symbols as follows: possible to define these new symbols as follows: (continues on next page)		· · · · · · · · · · · · · · · · · · ·	to
(e.g. leaves, flow- ers or fruits). It Sepossible to define these new symbols as follows: Seconetry 			
leaves, flow- ers or fruits), It seposible to define these new symbols as follows:			MTG
flow- ers or finits). I possible to define these new symbols as follows:			(e.g.
rs or fuis), t spossible to define these new symbols as follows:			leaves,
possible to define these new symbols as follows: Geometry			flow-
possible to define these new symbols as follows:			ers
it possible to define these new symbols as follows: Geometry,			or
s possible to define these new symbols as follows: Geometry, 			fruits).
Geometry ==			
(continues on next page)			11
<pre></pre>	s possible to define these new symbols as follows:		it.
Geotimues on next page → geotimes on next page	s possible to define these new symbols as follows:		Geometry_
(continues on next page) SMBPath, 	s possible to define these new symbols as follows:		Geometry_ ⊶=_
<pre></pre>	s possible to define these new symbols as follows:		Geometry」 →=_ →file1.
<pre></pre>	possible to define these new symbols as follows:		Geometry」 →=_ →file1.
<pre>SMBFil. SMBModel, sleaf_ s=_ s=_ sfeuill Class_ sleaf Class_ sle</pre>	possible to define these new symbols as follows:		Geometry_ ⊶=_ →file1. →geom
SMBModel →leaf →= →feuill Class →L →leaf Class →leaf Class →A ↓eaf Class →A ↓eaf	possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_
<pre></pre>	possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_ →=_
<pre></pre>	s possible to define these new symbols as follows:		Geometry →=_ →file1. →geom SMBPath →=_ →SMBFile
<pre></pre>	possible to define these new symbols as follows:		Geometry_ →file1. →geom SMBPath_ →SMBFile SMBModel_
$\begin{array}{c} \leftarrow L_{\downarrow} \\ \leftarrow = \downarrow \\ \leftarrow \downarrow leaf \\ Class_{\downarrow} \\ \leftarrow A_{\downarrow} \\ \leftarrow = \downarrow \end{array}$	possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_ →=_ →SMBFile SMBModel_ →leaf_
$\begin{array}{c} \leftarrow L_{\downarrow} \\ \leftarrow = \downarrow \\ \leftarrow \downarrow leaf \\ Class_{\downarrow} \\ \leftarrow A_{\downarrow} \\ \leftarrow = \downarrow \end{array}$	possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_ →=_ →SMBFile SMBModel_ →=_ →=_
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \left(\begin{array}{c} \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \left(\end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \left(\end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \left(\end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \left(\end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \left(\end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \left(\end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ $	possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_ →=_ →SMBFile SMBModel_ →leaf_ →feuil13
$\begin{array}{c} \leftarrow \text{leaf}\\ \text{Class}\\ \leftarrow A_{\perp}\\ \leftarrow = \\ \end{array}$	possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_ →=_ →SMBFile SMBModel_ →leaf_ →=_ →feuil13 Class_
$(\text{continues on next page}) \begin{array}{c} \text{Class} \\ \Rightarrow \text{A} \\ \Rightarrow = \\ \end{bmatrix}$	possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_ →=_ →SMBFile SMBModel_ →leaf_ →feuil13 Class_ →L_
$(\text{continues on next page}) \qquad \hookrightarrow A _ \\ \Rightarrow = _$	possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_ →=_ →SMBFile SMBModel_ →leaf_ →feuil13 Class_ →L_ →=_
(continues on next page) $\Rightarrow =$	s possible to define these new symbols as follows:		Geometry, →=_ →file1. →geom SMBPath, →=_ →SMBFile SMBModel, →leaf, →=_ →feuil13 Class, →L, →=_ →leaf
	s possible to define these new symbols as follows:		Geometry_ →=_ →file1. →geom SMBPath_ →=_ →SMBFile SMBModel_ →leaf_ →feuill3 Class_ →L_ →leaf Class_
→apple	s possible to define these new symbols as follows:		Geometry, →=_ →file1. →geom SMBPath, →=_ →SMBFile SMBModel, →leaf, →feuill3 Class, →L, →leaf Class, →A,

classes L and A.

Definition of defaults parameters

The value of default param-

ters used to compute ge-0metric models can be changed in the

dressing file. Here follows the complete list of these parameters illustrated on an example:

228

(continued from previous page)
DefaultPsi
↔= <u></u> ↔180
DefaultCat
= <u>-</u>
DefaultTru
↔= <u></u>
↔ 0
Alpha
⇔=_ Deletine
→Relative Phyllotaxy
=
$\leftrightarrow 2/$ $\leftrightarrow 5$
DefaultEdg
->=_ →PLUS_
⇔#_
→used_ →for_
→1015 →plantfra
→construc
⇔# <u></u>
⇔Redefini
→of_ →default
⇔values_
⇔of_ the
→the_ →geometri
→models
∽of
<i>→</i> # .
⇔componer
↔ (here_
\rightarrow component \rightarrow S)
MinLength_ →S_
⇔= <u>_</u>
→ 1000
MinTopDiam ⇔S_
⇔20
MinBottomE ⇔S_
$(continues on next page) \qquad \qquad$
↔20

(continued from previous page)

(continued from previous page)
FlowerAlpha
=
FlowerBeta
→ 0
DefaultTrur
→ 0
DefaultDist
↔= <u></u> ↔1000
NbPlantsPer
⇔6
$\hookrightarrow \#_{\square}$
→Colors_ →for_
↔interpola
MediumThres
$\hookrightarrow =$ \Box $\hookrightarrow 1$
MediumThres
-→= <u>_</u>
→0 MediumThres
⇔0
MinThreshol
$\hookrightarrow =$ \Box $\hookrightarrow 0$
MinThreshol
→ 0 MinThresho
⇔1
MaxThreshol ⇔=⊔
\rightarrow $ \Box$ \rightarrow 0
MaxThreshol
↔= <u></u>
→1 MaxThreshol
∽0
Any
of
these
key-

words can

be omitted in the dressing file. If omitted, а parameter takes а

default value, hard-coded into AMAPmod. The default values are defined in the following table: i

Name of the parameter	Description
SMBPath	Plant where SMB files are recorded
LengthUnit	Unit used to divide all the length data
AlphaUnit	Unit used to divide all the insertion angle
AzimutUnit	Unit used to divide all the angles
DiametersUnit	Unit used to divide all the diameters
DefaultEdge	Type of edge used to reconstruct a connected MTG
DefaultAlpha	Default insertion angle (value in degrees with respect to the horizontal plane).
Phillotaxy	Phyllotaxic angle (given in degrees) or in number of turns over number of leaves for this number of turns
Alpha	Nature of the insertion angle.
DefaultTeta	Default first Euler angle
DefaultPhi	Default second Euler angle
DefaultPsi	Default third Euler angle
MinLength S	Default length for elements whose class is S.
MinTopDiameter S	Default top diameter for elements whose class is S.
MinBotDiameter S	Default bottom diameter for elements whose class is S.
DefaultTrunkCategory	Default category for elements of the plant trunk. The default category of the other axes is their (botanical
DefaultDistance	Distance between the trunk of two plants when several plants are vizualized at a time
NbPlantsPerLine	Number of plants per line when several plants are vizualized at a time
MediumThresholdGreen	Green component of the color used for the values equal to the MediumThreshold (see command Plot on a
MediumThresholdRed	Idem for the red component.
MediumThresholdBlue	Idem for the blue component.
MinThresholdGreen	Green component of the color used for the values equal to the MinThreshold (see command Plot on a PL
MinThresholdRed	Idem for the red component.
MinThresholdBlue	Idem for the blue component.
MaxThresholdGreen	Green component of the color used for the values equal to the MaxThreshold (see command Plot on a PL
MaxThresholdRed	Idem for the red component
MaxThresholdBlue	Idem for the blue component.
Whorl	Number of virtual symbols per node
LeafClass	Class used for a leaf
LeafLength	Length of the leaf
LeafTopDiameter	Top diameter of the leaf

Table 1 - continued from previous pa

Name of the parameter	Description
LeafBottomDiameter	Bottom diameter of the leaf
LeafAlpha	Insertion angle of a leaf
LeafBeta	Azimuthal angle of a leaf (w.r.t its carrier)
FruitClass	Class used for a fruit
FruitLength	Length of the fruit
FruitTopDiamter	Top diameter of the fruit
FruitBottomDiameter	Bottom diameter of the fruit
FruitAlpha	Insertion angle of a fruit
FruitBeta	Azimuthal angle of a fruit (w.r.t its carrier)
FlowerClass	Class used for a flower
FlowerLength	Length of the flower
FlowerTopDiameter	Top diameter of the flower
FlowerBottomDiameter	Bottom diameter of the flower
FlowerAlpha	Insertion angle of a flower
FlowerBeta	Azimuthal angle of a flower (w.r.t its carrier)

Example of dressing file

see aml example

3.8.4 Curve Files (.crv)

А curve file contains the specification of Bezier curves. It has the following gen-

eral
struc-
ture:
20
n ourvol
curve1
k_1
$x_1 y_1 z_1$
xk1yk1zk1
curve2
k2
x1y1z1
xk2yk2zk2
•••
cur-
ven
kn
x1y1z1
xknyknzkn
where
n,
k1,
kn,
are
in-
te-
gers
and
curve1,
curve2,
••••
cur-
ven
are
strings
of
char-
ac-
ters.
All
co-
or-
di-

nates are real numbers.

3.9 Lsyst and MTGs

Author

Thomas Cokelaer <Thomas.Coke

endlsystem 3.9.1 Gen US- age First, im- port some mod- ules import_ -openalea -lpy -as_ -lpy -as_ -lpy -as_ -lpy -sypt4. -gtCort_ -ptCort_ -ptCort -ptC	(continued from previous page)	٦	
US- age First, im- port some mod- ules import_ openalea lpy from, PyQt4. QtCore import_ optGui optGui optGui import_ optGui import_ 		endlsy	stem
US- age First, im- port some mod- ules import_ openalea lpy from, PyQt4. QtCore import_ optGui optGui optGui import_ optGui import_ 			
US- age First, im- port some mod- ules import_ openalea lpy from, PyQt4. QtCore import_ optGui optGui optGui import_ optGui import_ 		3.9.1	Gen
age First, im- port some mod- ules import_ -openalea -lpy -as_ -lpy from_ -PyQt4. -QtCore_ -import_ -PyQt4. -QtCore_ -import_ -** from_ -PyQt4. -QtCore_ -import_ -** from_ -** -** from_ -** -** -** -** -** -** -** -** -** -*			
First, im- port some mod- ules import_ openalea lpy as_ lpy from PyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore import_ pyQt4. QtCore			
im- port some mod- ules import_ ~openalea ~lpy from_ ~PyQt4. ~QtCore_ ~import_ from_ ~PyQt4. ~gtGoii ~s* from_ ~pyQt4. ~gtGoii ~import_ *s*			
port some mod- ules import_ openalea lpy_ as_ lpy from_ PyQt4. QtCore_ import_ >t from_ PyQt4. QtGure_ 			
some mod- ules import_ openalea lpy from_ 			
mod- ules import_ →openalea →lpy from_ →PyQt4. →QtCore_ →import_ →* from_ →PyQt4. →QtCore_ →import_ →* from_			
ules import_ openalea opy as_ spy from_ pyQt4. optCore_ import_ 			
<pre></pre>			
<pre></pre>		import	
<pre> ↓ lpy_ ↓ as_ ↓ lpy ↓ lpy from ↓ lpy from ↓ lpy from ↓ lpy ↓</pre>			
<pre></pre>			
<pre></pre>			
<pre> → PyQt4. → QtCore_ → import_ →* from_ → PyQt4. → QtGui_ → import_ →* import_</pre>			
<pre></pre>			
<pre></pre>			
<pre></pre>			
from_ →PyQt4. →QtGui_ →import_ →* import_			rt
<pre> →PyQt4. →QtGui →import →* import </pre>			
→QtGui_ →import_ →* import_			
→import_ →* import_		→PyQt	4.
↔* import_			
import			
\leftrightarrow L1 me		→time	
from			
⇔openalea			alea
⇔plantgl.			
⇔all			
<pre> →import_</pre>			rt
from			
⇔openalea			
⇔mtg. ⇒io_			
→import_			rt
⇒1mpore_ ⇒1py2mtg,			
			91
→mtg21py,			lpy,
		പ	
→axialtree			ltree
↔u mtq?avia			avia
→mtg2axia. from _			axial
irom_ ⇔openalea			alea
⇔mtg.			
⇒anl _u			
-→import_			
(continues on next page) \rightarrow^{*}	(continues on next page)		_

into an
ax- i-
al-
tree
ob- ject:
ject:
l. →axiom

context

gg pr di it	
h pr du du ti ru gr it- er a- tic nu be - - - - - - - - - - - - -	context
pr du tic m e m b m b m b m	gets
du fit ru gr it ru mu bu bu <th>the</th>	the
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	pro-
Internation Internation	duc-
gr it er it	tion
gr it er it	rules,
it- er 4- 100 100 100 100 100 100 100 100 100 10	group,
er a- tion m be 	it-
	er-
Interpretended Interpretended Interpretended Interprete	tion
be 	num-
	UCI
	>
	⇔>
	⇔>
	⇔∟
	- →context
	=
	⇔l.
	⇔context()
	⇔>
	⇔>
	⇔∟
0	\hookrightarrow context.
	⇔getGroup(
	⇔>
	⇔>
	⇔⊔
	⇔context.
	⇔getIterat
6	6

last iteration

ished nor-
nally,
the
last
it-
er-
a- tion
must
be
equal
to
the
deriva-
tion
length.
 >
>
>
⇔1.
→getLastIt¢ 6
>
→ >
→>
↔ <u>_</u>
\hookrightarrow 1.
→derivation
7

lsystem with makecurrent

Todo: what is this for ?

	l. →makeCurre
	3.9.4 Exec
	the
	lsys-
	tem
	tem
nimate	
	In
	or-
	der
	to
	run
	the
	lsys-
	tem
	step
	by
	step
	with
	а
	plot
	re-
	fresh-
	ing
	at
	each
	step,
	use
	an-
	i-
	mate(),
or which you may provide a minimal time step between each iteration.	
	1.
	⊥. ⊶animate(s

still set the

where step

 \hookrightarrow

an- i-
ma- tion
to false
us- ing:
Viewer. ⇔animation

iterate

		⊶iterate ⊶_ ⊶1,
3.9. Lsystem and MTGs	243	⇔∟ ⇔l.
	(continues on next page)	⊶> →>
		>
		F [+X]F [− →X]+X
		⇔iterate
		⊶= <u> </u> ⇔l.
		⊶_ ⇔tree_
		⇔>
		>
		→X]+X)
		⊶X]+X AxialTree
		⊶iterate F[+X]F[-
		⇔l.
		⇔> ⇔_
		⇔>
		>
		by step:
		step
		or
		⊶iterate
		⊶∟ ⇔l.
		⇔>
		>
		end:
		the
		un- til
		steps
		Run all

(continued from previous page)

Note: When using *iterate()* with 1 argument, the Lsystem is run from the beginning again. To keep track of a previous run, 3 arguments are required. In such case, the first is used only to keep track of the number of iteration, that is stored in l.getLastIterationNb(), the second argument is then the number of iteration required and the 3d argument is the axiom (i.e., the previous AxialTree output).

lpy2mtg method

axialtree2mtg method

mtg2lpy and lpy2mtg method

you

may use gen- er- ateScene(axialtr us- ing from ope- nalea.lpy im- port gen- er- ateScene
3.10 Bibl
3.11 Clas and In- ter- faces
Each data struc- ture im- ple- ment a set of spe- cific in- ter- face. These in- ter- faces de- fine the name of

the methods, their semantic, and sometime their complexity.

See openalea. mtg. mtg

3.12 Algo

The
openalea.
mtg.
mtg
pack-
age
pro-
vides
data
struc-
ture
as
well
as
al-
go-
rithms.
This
sec-
tion
in-
tro-
duces
the

reader to the main algorithms and shows simple examples.

CHAPTER 4

Reference

4.1 MTG - Multi-scale Tree Graph

4.1.1 Overview

openalea.mtg.mtg.**MTG** (*filename=*", *has_date=False*) A Multiscale Tree Graph (MTG) class.

MTGs describe tree structures at different levels of details, named scales. For example, a botanist can described plants at different scales :

- at scale 0, the whole scene.
- at scale 1, the individual plants.
- at scale 2, the axes of each plants.
- at scale 3, the growth units of each axis, and so on.

Each scale can have a label, e.g. :

- scale 1 : P(lant)
- scale 2 : A(xis)
- sclae 3 : U(nit of growth)

Compared to a classical tree, complex() can be seen as parent() and components() as children(). An element at scale() N belongs to a complex() at scale() N-1 and has components() at scale N+1:

• /P/A/U (decomposition is noted using "/")

Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:

- /P1/P2/P3
- A1+A2<A3
- ...

4.1.2 Iterating over vertices

MTG.root	Return the tree root.
MTG.vertices([scale])	Return a list of the vertices contained in an MTG.
MTG.nb_vertices([scale])	Returns the number of vertices.
MTG.parent(vtx_id)	Return the parent of <i>vtx_id</i> .
MTG.children(vtx_id)	returns a vertex iterator
MTG.nb_children(vtx_id)	returns the number of children
MTG.siblings(vtx_id)	returns an iterator of vtx_id siblings.
MTG.nb_siblings(vtx_id)	returns the number of siblings
MTG.roots([scale])	Returns a list of the roots of the tree graphs at a given
	scale.
MTG.complex(vtx_id)	Returns the complex of <i>vtx_id</i> .
MTG.components(vid)	returns the components of a vertex
MTG.nb_components(vid)	returns the number of components
<pre>MTG.complex_at_scale(vtx_id, scale)</pre>	Returns the complex of <i>vtx_id</i> at scale <i>scale</i> .
MTG.components_at_scale(vid, scale)	returns a vertex iterator

4.1.3 Adding and removing vertices

MTGinit([filename, has_date])	Create a new MTG object.
<pre>MTG.add_child(parent[, child])</pre>	Add a child to a parent.
<pre>MTG.insert_parent(vtx_id[, parent_id])</pre>	Insert parent_id between vtx_id and its actual parent.
<pre>MTG.insert_sibling(vtx_id1[, vtx_id2])</pre>	Insert a sibling of vtk_id1.
MTG.add_component(complex_id[, compo-	Add a component at the end of the components
nent_id])	
MTG.add_child_and_complex(parent[, child,	Add a child at the end of children that belong to an other
])	complex.
MTG.add_child_tree(parent, tree)	Add a tree after the children of the parent vertex.
MTG.clear()	Remove all vertices and edges from the MTG.

4.1.4 Some usefull functions

<pre>simple_tree(tree, vtx_id[, nb_children,])</pre>	Generate and add a regular tree to an existing one at a given vertex.
<pre>random_tree(mtg, root[, nb_children,])</pre>	Generate and add a random tree to an existing one.
random_mtg(tree, nb_scales)	Convert a tree into an MTG of <i>nb_scales</i> .
colored_tree(tree, colors)	Compute a mtg from a tree and the list of vertices to be
	quotiented.
<pre>display_tree(tree, vid[, tab, labels, edge_type])</pre>	Display a tree structure.
display_mtg(mtg, vid)	Display an MTG

4.1.5 All

class openalea.mtg.mtg.**MTG**(*filename=", has_date=False*) Bases: openalea.mtg.tree.PropertyTree

A Multiscale Tree Graph (MTG) class.

MTGs describe tree structures at different levels of details, named scales. For example, a botanist can described

plants at different scales :

- at scale 0, the whole scene.
- at scale 1, the individual plants.
- at scale 2, the axes of each plants.
- at scale 3, the growth units of each axis, and so on.

Each scale can have a label, e.g. :

- scale 1 : P(lant)
- scale 2 : A(xis)
- sclae 3 : U(nit of growth)

Compared to a classical tree, complex() can be seen as parent() and components() as children(). An element at scale() N belongs to a complex() at scale() N-1 and has components() at scale N+1:

• /P/A/U (decomposition is noted using "/")

Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:

- /P1/P2/P3
- A1+A2<A3
- ...

```
AlgHeight (v1, v2)
```

Algebraic value defining the number of components between two components.

This function is similar to function Height(v1, v2): it returns the number of components between two components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgHeight(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgOrder(), AlgRank().

AlgOrder (v1, v2)

Algebraic value defining the relative order of one vertex with respect to another one.

This function is similar to function Order(v1, v2): it returns the number of +-type edges between two components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgOrder(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgRank().

AlgRank (v1, v2)

Algebraic value defining the relative rank of one vertex with respect to another one.

This function is similar to function Rank(v1, v2): it returns the number of <-type edges between two components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgRank(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgOrder().

Ancestors (v, EdgeType='*', RestrictedTo='NoRestriction', ContainedIn=None)

Array of all vertices which are ancestors of a given vertex

This function returns the array of vertices which are located before the vertex passed as an argument. These vertices are defined at the same scale as v. The array starts by v, then contains the vertices on the path from v back to the root (in this order) and finishes by the tree root.

Note: The anscestor array always contains at least the argument vertex v.

Usage

g.Ancestors(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father
- EdgeType (str): cf. Father

Returns list of vertices's id (int)

Examples

See also:

MTG(), Descendants().

Axis (v, Scale=-1)

Array of vertices constituting a botanical axis

An axis is a maximal sequence of vertices connected by '<'-type edges. Axis return the array of vertices representing the botanical axis which the argument v belongs to. The optional argument enables the user to choose the scale at which the axis decomposition is required.

Usage

```
Axis(v)
Axis(v, Scale=s)
```

Parameters

• v (int) : Vertex of the active MTG

Optional Parameters

• Scale (str): scale at which the axis components are required.

Returns list of vertices ids


```
See also:
```

```
MTG(), Path(), Ancestors().
```

Class(vid)

Class of a vertex.

The Class of a vertex are the first characters of the label. The label of a vertex is the string defined by the concatenation of the class and its index.

The label thus provides general information about a vertex and enable to encode the plant components.

The class_name may be not defined. Then, an empty string is returned.

Usage

>>> g.class_name(1)

Parameters

• *vid* (int)

Returns The class name of the vertex (str).

See also:

MTG(), openalea.mtg.aml.Index(), openalea.mtg.aml.Class()

ClassScale(c)

Scale at which appears a given class of vertex

Every vertex is associated with a unique class. Vertices from a given class only appear at a given scale which can be retrieved using this function.

Usage

ClassScale(c)

Parameters

• c (str) : symbol of the considered class

Returns int

See also:

```
MTG(), Class(), Scale(), Index().
```

```
Complex (v, Scale=-1)
```

Complex of a vertex.

Returns the complex of v. The complex of a vertex v has a scale lower than v : Scale(v) - 1. In a MTG, every vertex except for the MTG root (cf. *MTGRoot*), has a uniq complex. None is returned if the argument is the MTG Root or if the vertex is undefined.

Usage

```
g.Complex(v)
g.Complex(v, Scale=2)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- *Scale* (int) : scale of the complex
- Returns Returns vertex's id (int)
- **Details** When a scale different form Scale(v)-1 is specified using the optional parameter *Scale*, this scale must be lower than that of the vertex argument.

Todo: Complex(v, Scale=10) returns v why ? is this expected

See also:

MTG(), Components().

ComponentRoots (v, Scale=-1)

Set of roots of the tree graphs that compose a vertex

In a MTG, a vertex may have be decomposed into components. Some of these components are connected to each other, while other are not. In the most general case, the components of a vertex are organized into several tree-graphs. This is for example the case of a MTG containing the description of several plants: the MTG root vertex can be decomposed into tree graphs (not connected) that represent the different plants. This function returns the set of roots of these tree graphs at scale Scale(v)+1. The order of these roots is not significant.

When a scale different from Scale(v)+1 is specified using the optional argument Scale(), this scale must be greater than that of the vertex argument.

Usage

```
g.ComponentRoots(v)
g.ComponentRoots(v, Scale=s)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (str): scale of the component roots.

Returns list of vertices's id (int)

Examples

```
>>> v=g.MTGRoot() # global MTG root
0
>>> g.ComponentRoots(v) # set of first vertices at scale 1
[1,34,76,100,199,255]
>>> g.ComponentRoots(v, Scale=2) # set of first vertices at scale 2
[2,35,77,101,200,256]
```


See also:

MTG(), Components(), Trunk().

Components (v, Scale=-1)

Set of components of a vertex.

The set of components of a vertex is returned as a list of vertices. If s defines the scale of v, components are defined at scale s + 1. The array is empty if the vertex has no components. The order of the components in the array is not significant.

When a scale is specified using optional argument :arg:Scale, it must be necessarily greater than the scale of the argument.

Usage

```
Components(v)
Components(v, Scale=2)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (int) : scale of the components.

Returns list of int

See also:

MTG(), Complex().

Defined(*vid*)

Test whether a given vertex belongs to the active MTG.

Usage

Defined(v)

Parameters

• v (int) : vertex of the active MTG

Returns True or False

See also:

MTG().

Descendants (*v*, *EdgeType='*'*, *RestrictedTo='NoRestriction'*, *ContainedIn=None*) Set of vertices in the branching system borne by a vertex.

This function returns the set of descendants of its argument as an array of vertices. The array thus consists of all the vertices, at the same scale as v, that belong to the branching system starting at v. The order of the vertices in the array is not significant.

Note: The argument always belongs to the set of its descendants.

Usage

```
g.Descendants(v)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father
- EdgeType (str): cf. Father

Returns list of int.

Examples

```
>>> v
78
>>> g.Sons(v) # set of sons of v
[78,99,101]
>>> g.Descendants(v) # set of descendants of v
[78,99,101,121,133,135,156,171,190]
```


MTG(), Ancestors().

EdgeType (v1, v2)

Type of connection between two vertices.

Returns the symbol of the type of connection between two vertices (either < or +). If the vertices are not connected, None is returned.

Usage

```
EdgeType(v1, v2)
```

Parameters

- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns '<' (successor), '+' (branching) or None

See also:

```
MTG(), Sons(), Father().
```

Extremities (*v*, *RestrictedTo='NoRestriction'*, *ContainedIn=None*)

Set of vertices that are the extremities of the branching system born by a given vertex.

This function returns the extremities of the branching system defined by the argument as a list of vertices. These vertices have the same scale as v and their order in the list is not signifiant. The result is always a non empty array.

Usage

Extremities(v)

Properties

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father()
- ContainedIn (int): cf. Father()

Returns list of vertices's id (int)

Examples

```
>>> g.Descendants(v)
[3, 45, 47, 78, 102]
```

(continues on next page)

(continued from previous page)

```
>>> g.Extremities(v)
[47, 102]
```

See also:

MTG(), Descendants(), Root(), MTGRoot().

Father (v, EdgeType='*', RestrictedTo='NoRestriction', ContainedIn=None, Scale=-1) Topological father of a given vertex.

Returns the topological father of a given vertex. And *None* if the father does not exist. If the argument is not a valid vertex, *None* is returned.

Usage

```
g.Father(v)
g.Father(v, EdgeType='<')
g.Father(v, RestrictedTo='SameComplex')
g.Father(v, ContainedIn=complex_id)
g.Father(v, Scale=s)</pre>
```

Parameters v (int) : vertex of the active MTG

Optional Parameters If no optional argument is specified, the function returns the topological father of the argument (vertex that bears or precedes to the vertex passed as an argument).

It may be usefull in some cases to consider that the function only applies to a subpart of the MTG (e.g. an axis).

The following options enables us to specify such restrictions:

• EdgeType (str) : filter on the type of edge that connect the vertex to its father.

Values can be '<', '+', and '*'. Values '*' means both '<' and '+'. Only the vertex connected with the specified type of edge will be considered.

• RestrictedTo (str) : filter defining a subpart of the MTG where the father must be considered. If the father is actually outside this subpart, the result is *None*. Possible subparts are defined using keywords in ['SameComplex', 'SameAxis', 'NoRestriction'].

For instance, if *RestrictedTo* is set to 'SameComplex', Father (v) () returns a defined vertex only if the father f of v exists in the MTG and if v and f have the same complex.

• ContainedIn (int) : filter defining a subpart of the MTG where the father must be considered. If the father is actually outside this subpart, the result is *None*.

In this case, the subpart of the MTG is made of the vertices that composed *composite_id* (at any scale).

• Scale (int) : the scale of the considered father. Returns the vertex from scale *s* which either bears and precedes the argument.

The scale *s* can be lower than the argument's (corresponding to a question such as 'which axis bears the internode?') or greater (e.g. 'which internodes bears this annual shoot?').

Returns the vertex id of the Father (int)

See also:

MTG(), Defined(), Sons(), EdgeType(), Complex(), Components().

Height (v1, v2=None)

Number of components existing between two components in a tree graph.

The height of a vertex (v2) with respect to another vertex (v1) is the number of edges (of either type '+' or '<') that must be crossed when going from v1 to v2 in the graph.

This is a non-negative integer. When the function has only one argument v1, the height of v1 correspond to the height of v1 'with respect to the root of the branching system containing 'v1.

Usage

Height(v1) Height(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that one is an ancestor of the other. When the order is relevant, use function *AlgHeight*.

See also:

MTG(), Order(), Rank(), EdgeType(), AlgHeight(), AlgHeight(), AlgOrder().

Index (vid)

Index of a vertex

The Index of a vertex is a feature always defined and independent of time (like the index). It is represented by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and its index. The label thus provides general information about a vertex and enables us to encode the plant components.

Label (vid)

Label of a vertex.

Usage

>>> g.label(v)

Parameters

• *vid* (int) : vertex of the MTG

Returns The class and Index of the vertex (str).

See also:

MTG(), index(), class_name()

Path (v1, v2)

List of vertices defining the path between two vertices

This function returns the list of vertices defining the path between two vertices that are in an ancestor relationship. The vertex v1 must be an ancestor of vertex v2. Otherwise, if both vertices are valid, then the empty array is returned and if at least one vertex is undefined, None is returned.

Usage

g.Path(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns list of vertices's id (int)

Examples

```
>>> v # print the value of v
78
>>> g.Ancestors(v)
[78,45,32,10,4]
>>> g.Path(10,v)
[10,32,45,78]
>>> g.Path(9,v) # 9 is not an ancestor of 78
[]
```

Note: v1 can be equal to v2.

See also:

```
MTG(), Axis(), Ancestors().
```

Predecessor (*v*, ***kwds*)

Father of a vertex connected to it by a '<' edge

This function is equivalent to Father(v, EdgeType-> '<'). It thus returns the father (at the same scale) of the argument if it is located in the same botanical. If it does not exist, None is returned.

Usage

```
Predecessor(v)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns return the vertex id (int)

Examples

```
>>> Predecessor(v)
7
>>> Father(v, EdgeType='+')
>>> Father(v, EdgeType-> '<')
7</pre>
```

See also:

MTG(), Father(), Successor().

Rank (v1, v2=None)

Rank of one vertex with respect to another one.

This function returns the number of consecutive '<'-type edges between two components, at the same scale, and does not take into account the order of vertices v1 and v2. The result is a non negative integer.

Usage

Rank(v1) Rank(v1, v2)

Parameters

• v1 (int) : vertex of the active MTG

• v2 (int) : vertex of the active MTG

Returns int

If v1 is not an ancestor of v2 (or vise versa) within the same botanical axis, or if v1 and v2 are not defined at the same scale, an error value Undef id returned.

See also:

```
MTG(), Order(), Height(), EdgeType(), AlgRank(), AlgHeight(), AlgOrder().
```

Root (*v*, *RestrictedTo='*'*, *ContainedIn=None*)

Root of the branching system containing a vertex

This function is equivalent to Ancestors(v, EdgeType='<')[-1]. It thus returns the root of the branching system containing the argument. This function never returns None.

Usage

g.Root(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns return vertex's id (int)

Examples

```
>>> g.Ancestors(v) # set of ancestors of v
[102,78,35,33,24,12]
>>> g.Root(v) # root of the branching system containing v
12
```


See also:

MTG(), Extremities().

Scale(vid)

Returns the scale of a vertex.

All vertices should belong to a given scale.

Usage

g.scale(vid)

Parameters

• vid (int) - vertex identifier.

Returns The scale of the vertex. It is a positive int in [0,g.max_scale()].

```
Sons (v, RestrictedTo='NoRestriction', EdgeType='*', Scale=-1, ContainedIn=None)
Set of vertices born or preceded by a vertex
```

The set of sons of a given vertex is returned as an array of vertices. The order of the vertices in the array is not significant. The array can be empty if there are no son vertices.

Usage

```
g.Sons(v)
g.Sons(v, EdgeType= '+')
g.Sons(v, Scale= 3)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father()
- ContainedIn (int) : cf. Father ()
- EdgeType (str) : filter on the type of sons.
- Scale (int) : set the scale at which sons are considered.

Returns list(vid)

Details When the option EdgeType is applied, the function returns the set of sons that are connected to the argument with the specified type of relation.

Note: Sons(v, EdgeType= '<') is not equivalent to Successor(v). The first function returns an array of vertices while the second function returns a vertex.

The returned vertices have the same scale as the argument. However, coarser or finer vertices can be obtained by specifying the optional argument *Scale* at which the sons are considered.

Examples

```
>>> g.Sons(v)
[3,45,47,78,102]
>>> g.Sons(v, EdgeType= '+') # set of vertices borne by v
[3,45,47,102]
>>> g.Sons(v, EdgeType= '<') # set of successors of v on the same axis
[78]</pre>
```

See also:

MTG(), Father(), Successor(), Descendants().

Successor (v, RestrictedTo='NoRestriction', ContainedIn=None)

Vertex that is connected to a given vertex by a '<' edge type (i.e. in the same botanical axis).

This function is equivalent to Sons(v, EdgeType='<')[0]. It returns the vertex that is connected to a given vertex by a '<' edge type (i.e. in the same botanical axis). If many such vertices exist, an arbitrary one is returned by the function. If no such vertex exists, None is returned.

Usage

g.Successor(v)

Parameters

• v1 (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns Returns vertex's id (int)

Examples

```
>>> g.Sons(v)
[3, 45, 47, 78, 102]
>>> g.Sons(v, EdgeType='+') # set of vertices borne by v
[3, 45, 47, 102]
>>> g.Sons(v, EdgeType-> '<') # set of successors of v
[78]
>>> g.Successor(v)
78
```

See also:

MTG(), Sons(), Predecessor().

Trunk (v, Scale=-1)

List of vertices constituting the bearing botanical axis of a branching system.

Trunk returns the list of vertices representing the botanical axis defined as the bearing axis of the whole branching system defined by v. The optional argument enables the user to choose the scale at which the trunk should be detailed.

Usage

```
Trunk(v)
Trunk(v, Scale= s)
```

Parameters

• *v* (int) : Vertex of the active MTG.

Optional Parameters

• Scale (str): scale at which the axis components are required.

Returns list of vertices ids

Todo: check the usage of the optional argument Scale

See also:

```
MTG(), Path(), Ancestors(), Axis().
```

VtxList (Scale=-1)

Array of vertices contained in a MTG

The set of all vertices in the MTG() is returned as an array. Vertices from all scales are returned if no option is used. The order of the elements in this array is not significant.

Usage

```
>>> VtxList()
>>> VtxList(Scale=2)
```

Optional Parameters

• Scale (int): used to select components at a particular scale.

Returns

• list of vid

Background MTGs()

See also:

MTG(), scale(), Class(), index().

add_child (parent, child=None, **properties)

Add a child to a parent. Child is appended to the parent's child list.

Parameters

- parent (int) The parent identifier.
- child (int or None) The child identifier. If None, an ID is generated.

Returns Identifier of the inserted vertex (child)

Returns Type int

```
add_child_and_complex (parent, child=None, complex=None, **properties)
Add a child at the end of children that belong to an other complex.
```

Parameters

- parent: The parent identifier.
- child: Set the child identifier to this value if defined.
- complex: Set the complex identifier to this value if defined.

Returns (vid, vid): child and complex ids.

add_child_tree (parent, tree)

Add a tree after the children of the parent vertex. Complexity have to be O(1) if tree == sub_tree()

Parameters

- parent vertex identifier
- **tree** a rooted tree

add_component (complex_id, component_id=None, **properties)
Add a component at the end of the components

Parameters

- *complex_id*: The complex identifier.
- component_id: Set the component identifier to this value if defined.

Returns The id of the new component or the component_id if given.

add_element (parent_id, edge_type='/', scale_id=None)

Add an element to the graph, if vid is not provided create a new vid ??? .. warning: Not Implemented.

Parameters

- parent_id (int) The id of the parent vertex
- *edge_type* (str) The type of relation:
 - "/" : component (default)
 - "+" : branch
 - "<" : successor.
- *scale_id* (int) The id of the scale in which to add the vertex.

Returns The vid of the created vertex

add_property (property_name)

Add a new map between vid and a data Do not fill this property for any vertex

backward_rewriting_traversal()

children(vtx_id)

returns a vertex iterator

Parameters vtx_id - The vertex identifier.

Returns iter of vertex identifier

children_iter (*vtx_id*) returns a vertex iterator

Parameters vtx_id – The vertex identifier.

Returns iter of vertex identifier

class_name(vid)

Class of a vertex.

The Class of a vertex are the first characters of the label. The label of a vertex is the string defined by the concatenation of the class and its index.

The label thus provides general information about a vertex and enable to encode the plant components.

The class_name may be not defined. Then, an empty string is returned.

Usage

>>> g.class_name(1)

Parameters

• *vid* (int)

Returns The class name of the vertex (str).

See also:

MTG(), openalea.mtg.aml.Index(), openalea.mtg.aml.Class()

clear()

Remove all vertices and edges from the MTG.

This also removes all vertex properties. Don't change references to object such as internal dictionaries.

Example

```
>>> g.clear()
>>> g.nb_vertices()
0
>>> len(g)
0
```

clear_properties (exclude=[])

Remove all the properties of the MTG.

Example

>>> g.clear_properties()

complex (vtx_id)

Returns the complex of *vtx_id*.

Parameters

• *vtx_id* (int) - The vertex identifier.

Returns complex identifier or None if vtx_id has no parent.

Return Type int

complex_at_scale (vtx_id, scale)
Returns the complex of vtx_id at scale scale.

Parameters

- *vtx_id*: The vertex identifier.
- scale: The scale identifier.

Returns vertex identifier

Returns Type int

```
component_roots (vtx_id)
Return the set of roots of the tree graphs that compose a vertex.
```

component_roots_at_scale (vtx_id, scale)
 Return the list of roots of the tree graphs that compose a vertex.

component_roots_at_scale_iter (vtx_id, scale)
 Return the set of roots of the tree graphs that compose a vertex.

component_roots_iter(vtx_id)

Return an iterator of the roots of the tree graphs that compose a vertex.

components (vid)

returns the components of a vertex

Parameters vid – The vertex identifier.

Returns list of vertex identifier

components_at_scale(vid, scale)

returns a vertex iterator

Parameters

• vid: The vertex identifier.

Returns iter of vertex identifier

components_at_scale_iter(vid, scale)
returns a vertex iterator

Parameters

• *vid*: The vertex identifier.

Returns iter of vertex identifier

components_iter(vid)

returns a vertex iterator

Parameters vid – The vertex identifier.

Returns iter of vertex identifier

copy()

Return a copy of the graph.

Returns

• g (MTG) - A copy of the MTG

display (*max_scale=0*, *display_id=True*, *display_scale=False*, *nb_tab=12*, **kwds) Print an MTG on the console.

Optional Parameters

- max_scale: do not print vertices of scale greater than max_scale
- *display_id*: display the vid of the vertices
- *display_scale*: display the scale of the vertices
- *nb_tab*: display the MTG using nb_tab columns

edge_type (vid)

Type of the edge between a vertex and its parent.

The different values are '<' for successor, and '+' for ramification.

edges (scale=-1)

Parameters

• *scale* (int) - Scale at which to iterate.

Returns Iterator on the edges of the MTG at a given scale or on all edges if scale < 0.

Returns Type iter

forward_rewriting_traversal()

get_root()

Return the tree root.

Returns vertex identifier

get_vertex_property(vid)

Returns all the properties defined on a vertex.

graph_properties()

return a dict containing the graph properties/

Return type dict of {property_name:data}

has_vertex(vid)

Tests whether a vertex belongs to the graph.

Parameters

• vid (int) - vertex id to test

Returns Type bool

index(vid)

Index of a vertex

The Index of a vertex is a feature always defined and independent of time (like the index). It is represented by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and its index. The label thus provides general information about a vertex and enables us to encode the plant components.

insert_parent (vtx_id, parent_id=None, **properties)

Insert parent_id between vtx_id and its actual parent. Inherit of the complex of the parent of vtx_id.

Parameters

- *vtx_id* (int): a vertex identifier
- parent_id (int): a vertex identifier

Returns Identifier of the inserted vertex (parent_id).

Returns Type int

insert_scale (inf_scale=None, partition=None, default_label=None, preserve_order=True)
Add a scale to MTG

Parameters

- inf_scale (int) New scale is inserted between inf_scale and inf_scale-1
- partition (lambda v: bool) Function defining new scale by quotienting vertices at inf_scale
- default_label (str) default label of inserted vertices
- *preserve_order* (bool) True iif children at new scale are ordered consistently with children at inf_scale

Returns MTG with inserted scale

Remark

- New scale is inserted in self as well.
- · function partition should return True at roots of subtrees where partition changes

and False elsewhere.

insert_sibling (vtx_id1, vtx_id2=None, **properties)

Insert a sibling of vtk_id1. The vertex in inserted before vtx_id1.

Parameters

- *vtx_id1* (int) : a vertex identifier
- vtx_id2 (int) : the vertex to insert

Returns Identifier of the inserted vertex (vtx_id2)

Returns Type int

insert_sibling_tree(vid, tree)

Insert a tree before the vid. vid and the root of the tree are siblings. Complexity have to be O(1) if tree comes from the actual tree (tree=self.sub_tree())

Parameters

- **vid** vertex identifier
- **tree** a rooted tree

is_leaf(vtx_id)

Test if *vtx_id* is a leaf.

Returns bool

is_valid()

Tests the validity of the graph. Currently always returns True.

Returns Type bool

Todo Implement this function.

iter_edges (scale=-1)

Parameters

• *scale* (int) - Scale at which to iterate.

Returns Iterator on the edges of the MTG at a given scale or on all edges if scale < 0.

Returns Type iter

```
iteredges (scale=-1)
```

Iter on the edges of the tree.

label(vid)

Label of a vertex.

Usage

>>> g.label(v)

Parameters

• vid (int) : vertex of the MTG

Returns The class and Index of the vertex (str).

See also:

MTG(), index(), class_name()

max_scale()

Return the max scale identifier.

By convention, the mtg contains scales in $[0, max_scale]$.

Usage

>>> print g.max_scale()

Returns S, the maximum scale identifier.

Note: The complexity is O(n).

See also:

scale(), scales()

nb_children (*vtx_id*) returns the number of children

Parameters

• *vtx_id*: The vertex identifier.

Returns int

nb_components (*vid*) returns the number of components

Parameters

• vid: The vertex identifier.

Returns int

nb_scales()

Returns The number of scales defined in the mtg..

Returns Type int

Note: The complexity is O(n).

```
nb_siblings(vtx_id)
```

returns the number of siblings

Returns int

```
nb_vertices (scale=-1)
```

Returns the number of vertices.

Usage

```
>>> g.nb_vertices()
100
>>> g.nb_vertices(scale=3)
68
```

Parameters

• scale (int) - Id of scale for which to count vertices.

Returns Number of vertices at *scale* or total number of vertices if scale < 0.

```
node (vid, klass=None)
```

Return a node associated to the vertex vid.

It allows to access to the properties with an object oriented interface.

Example

```
node = g.node(1)
print node.edge_type
print node.label
node.label = 'B'
print g.label(1)
```

(continues on next page)

(continued from previous page)

```
print node.parent
print list(node.children)
```

order(v1)

Order of a vertex in a graph.

The order of a vertex in a graph is the number of '+' edges crossed when going from v1 'to 'v2.

If v2 is None, the order of v1 correspond to the order of v1 with respect to the root.

parent (vtx_id)

Return the parent of *vtx_id*.

Parameters

• *vtx_id*: The vertex identifier.

Returns vertex identifier

plot_property (prop, **kwds)

Plot properties of MTG using matplotlib

Example

>>> g.plot_property('length')

properties()

Returns all the property maps contain in the graph.

property(name)

Returns the property map between the vid and the data. :returns: dict of {vid:data}

property_names()

names of all property maps. Properties are defined only on vertices, even edge properties. return iter of names

property_names_iter()

iter on names of all property maps. Properties are defined only on vertices, even edge properties. return iter of names

reindex (mapping=None, copy=False)

Assign a new identifier to each vertex.

This method assigns a new identifier to each vertex of the MTG. The mapping can be user defined or is implicit (*mapping*). This method modify the MTG in place or return a new MTG (*copy*).

Usage

```
>>> g.reindex()
>>> g1 = g.reindex(copy=True)
>>> mymap = dict(zip(list(traversal.iter_mtg2(g,g.root)), range(len(g))))
>>> g2 = g.reindex(mapping=mymap, copy=True)
```

Optional Parameters

- mapping (dict): define a mapping between old and new vertex identifiers.
- copy (bool) : modify the object in place or return a new MTG.

Returns

• a MTG

Background MTGs()

See also:

sub_mtg()

remove_property (property_name)

Remove the property map called property_name from the graph.

remove_scale(scale)

Remove all the vertices at a given scale.

The upper and lower scale are then connected.

• scale : the scale that have to be removed

Returns

- - g (the input MTG modified in place.)
- - results (a list of dict) all the vertices that have been removed

remove_tree (vtx_id)

Remove the sub tree rooted on *vtx_id*.

Returns bool

remove_vertex (vid, reparent_child=False)

Remove a specified vertex of the graph and remove all the edges attached to it.

Parameters

- *vid* (int) : the id of the vertex to remove
- reparent_child (bool) : reparent the children of vid to its parent.

Returns None

replace_parent (vtx_id, new_parent_id, **properties)

Change the parent of vtx_id to new_parent_id. The new parent of vtx_id is new_parent_id. vtx_id and new_parent_id must have the same scale.

This function do not change the edge_type between vtx_id and its parent.

Inherit of the complex of the parent of vtx_id.

Parameters

- *vtx_id* (int): a vertex identifier
- new_parent_id (int): a vertex identifier

Returns None

roots (scale=0)

Returns a list of the roots of the tree graphs at a given scale.

In an MTG, the MTG root vertex, namely the vertex *g.root*, can be decomposed into several, nonconnected, tree graphs at a given scale. This is for example the case of an MTG containing the description of several plants.

Usage roots = g.roots(scale=g.max_scale()

Returns list on vertex identifiers of root vertices at a given *scale*.

Returns Type list of vid

roots_iter(scale=0)

Returns an iterator of the roots of the tree graphs at a given scale.

In an MTG, the MTG root vertex, namely the vertex *g.root*, can be decomposed into several, nonconnected, tree graphs at a given scale. This is for example the case of an MTG containing the description of several plants.

Usage roots = list(g.roots(scale=g.max_scale())

Returns iterator on vertex identifiers of root vertices at a given scale.

Returns Type iter

scale(vid)

Returns the scale of a vertex.

All vertices should belong to a given scale.

Usage

g.scale(vid)

Parameters

• *vid* (int) - vertex identifier.

Returns The scale of the vertex. It is a positive int in [0,g.max_scale()].

scales()

Return the different scales of the mtg.

Returns Iterator on scale identifiers (ints).

Note: The complexity is O(n).

scales_iter()

Return the different scales of the mtg.

Returns Iterator on scale identifiers (ints).

Note: The complexity is O(n).

set_root (vtx_id)

Set the tree root.

Parameters vtx_id – The vertex identifier.

siblings (vtx_id)

returns an iterator of vtx_id siblings. vtx_id is not include in siblings.

Parameters

• vtx_id: The vertex identifier.

Returns iter of vertex identifier

siblings_iter(vtx_id)

returns an iterator of vtx_id siblings. vtx_id is not include in siblings.

Parameters

• *vtx_id*: The vertex identifier.

Returns iter of vertex identifier

```
sub_mtg(vtx_id, copy=True)
```

Return the submtg rooted on *vtx_id*.

The induced sub mtg of the mtg are all the vertices which have vtx_id has a complex plus vtx_id.

Parameters

• *vtx_id*: A vertex of the original tree.

- *copy*: If True, return a new tree holding the subtree. If False, the subtree is created using the original tree by deleting all vertices not in the subtree.
- **Returns** A sub mtg of the mtg. If copy=True, a new MTG is returned. Else the sub mtg is created inplace by modifying the original tree.

```
sub_tree (vtx_id, copy=True)
```

Return the subtree rooted on *vtx_id*.

The induced subtree of the tree has the vertices in the ancestors of vtx_id.

Parameters

- *vtx_id*: A vertex of the original tree.
- *copy*: If True, return a new tree holding the subtree. If False, the subtree is created using the original tree by deleting all vertices not in the subtree.

Returns A sub tree of the tree. If copy=True, a new Tree is returned. Else the subtree is created inplace by modifying the original tree.

vertices (*scale=-1*)

Return a list of the vertices contained in an MTG.

The set of all vertices in the MTG is returned. Vertices from all scales are returned if no scale is given. Otherwise, it returns only the vertices of the given scale. The order of the elements in this array is not significant.

Usage

```
g = MTG()
len(g) == len(list(g.vertices()))
for vid in g.vertices(scale=2):
    print g.class_name(vid)
```

Optional Parameters

• *scale* (int): used to select vertices at a given scale.

Returns Iterator on vertices at "scale" or on all vertices if scale < 0.

Returns Type list of vid

Background

See also:

children(), components(), vertices_iter()..

vertices_iter(scale=-1)

Return an iterator of the vertices contained in an MTG.

The set of all vertices in the MTG is returned. Vertices from all scales are returned if no scale is given. Otherwise, it returns only the vertices of the given scale. The order of the elements in this array is not significant.

Usage

```
g = MTG()
len(g) == len(list(g.vertices()))
for vid in g.vertices(scale=2):
    print g.class_name(vid)
```

Optional Parameters

• scale (int): used to select vertices at a given scale.

Returns Iterator on vertices at "scale" or on all vertices if scale < 0.

Returns Type iter of vid

Background

See also:

children(), components().

root

Return the tree root.

Returns vertex identifier

openalea.mtg.mtg.simple_tree (*tree*, *vtx_id*, *nb_children=3*, *nb_vertices=20*) Generate and add a regular tree to an existing one at a given vertex.

Add a regular tree at a given vertex id position *vtx_id*. The length of the sub_tree is *nb_vertices*. Each new vertex has at most *nb_children* children.

Parameters

- tree: the tree thaat will be modified
- vtx_id (id): vertex on which the sub tree will be added.
- *nb_children* (int) : number of children that are added to each vertex
- *nb_vertices* (int) : number of vertices to add

Returns The modified tree

Examples

```
g = MTG()
vid = g.add_component(g.root)
simple_tree(g, vid, nb_children=2, nb_vertices=20)
print len(g) # 22
```

See also:

```
random_tree(), random_mtg()
```

openalea.mtg.mtg.**random_tree** (*mtg*, *root*, *nb_children=3*, *nb_vertices=20*) Generate and add a random tree to an existing one.

Add a random sub tree at a given vertex id position *root*. The length of the sub_tree is *nb_vertices*. The number of children for each vertex is sampled according to *nb_children* distribution. If nb_children is an interger, the random distribution is uniform between [1, nb_children]. Otherwise, you can give your own discrete distribution sampling function.

Parameters

- *mtg*: the mtg to modified
- root (id): vertex id on which the sub tree will be added.

Optional Parameters

- nb_vertices
- *nb_children* : an int or a discrete distribution sampling function.

Returns The last added vid.

Examples

```
g = MTG()
vid = g.add_component(g.root)
random_tree(g, vid, nb_children=2, nb_vertices=20)
print len(g) # 22
```

See also:

```
simple_tree(), random_mtg()
```

openalea.mtg.mtg.**random_mtg**(*tree*, *nb_scales*) Convert a tree into an MTG of *nb_scales*.

Add a random sub tree at a given vertex id position *root*. The length of the sub_tree is *nb_vertices*. Each new vertex has at most *nb_children* children.

Parameters

- *mtg*: the mtg to modified
- root (id): vertex id on which the sub tree will be added.

Returns The last added vid.

Examples

```
g = MTG()
random_tree(g, g.root, nb_children=2, nb_vertices=20)
print len(g) # 21
```

See also:

```
simple_tree(), random_tree()
```

openalea.mtg.mtg.colored_tree (*tree*, *colors*) Compute a mtg from a tree and the list of vertices to be quotiented.

Note: The tree has to be a real tree and not an MTG

Example

```
from random import randint, sample
g = MTG()
random_tree(g, g.root, nb_vertices=200)
# At each scale, define the vertices which will define a complex
nb_scales=4
colors = {}
colors[3] = g.vertices()
colors[2] = random.sample(colors[3], randint(1,len(g)))
colors[2].sort()
if g.root not in colors[2]:
    colors[2].insert(0, g.root)
colors[1] = [g.root]
g, mapping = colored_tree(g, colors)
```

openalea.mtg.mtg.display_tree (tree, vid, tab=", labels={}, edge_type={})
Display a tree structure.

```
openalea.mtg.mtg.display_mtg(mtg, vid)
Display an MTG
```

..todo:: Write doc.

Download the source file .../.../src/mtg/mtg.py.

4.2 High level reporting function compatible with AML

Interface to use the new MTG implementation with the old AMAPmod interface.

```
openalea.mtg.aml.Activate(g)
```

Activate a MTG already loaded into memory

All the functions of the MTG module use an implicit MTG argument which is defined as the active MTG.

This function activates a MTG already loaded into memory which thus becomes the implicit argument of all functions of module MTG.

Usage

```
>>> Activate(g)
```

Parameters

• g: MTG to be activated

Details When several MTGs are loaded into memory, only one is active at a time. By default, the active MTG is the last MTG loaded using function *MTG()*.

However, it is possible to activate an MTG already loaded using function Activate() The current active MTG can be identified using function Active().

Background MTG()

See also:

MTG()

```
openalea.mtg.aml.Active()
Returns the active MTG.
```

If no MTG is loaded into memory, None is returned.

Usage

>>> Active()

Returns

• *MTG()*

Details When several MTGs are loaded into memory, only one is active at a time. By default, the active MTG is the last MTG loaded using function *MTG()*. However, it is possible to activate an MTG already loaded using function *Activate()*. The current active MTG can be identified using function *Active()*.

See also:

MTG(), Activate().

openalea.mtg.aml.AlgHeight (v1, v2)

Algebraic value defining the number of components between two components.

This function is similar to function Height(v1, v2): it returns the number of components between two components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgHeight(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgOrder(), AlgRank().

openalea.mtg.aml.AlgOrder(v1, v2)

Algebraic value defining the relative order of one vertex with respect to another one.

This function is similar to function Order(v1, v2): it returns the number of +-type edges between two components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgOrder(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an error value None is returned.

See also:

MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgRank().

openalea.mtg.aml.AlgRank(v1,v2)

Algebraic value defining the relative rank of one vertex with respect to another one.

This function is similar to function Rank(v1, v2): it returns the number of <-type edges between two components, at the same scale, but takes into account the order of vertices v1 and v2.

The result is positive if v1 is an ancestor of v2, and negative if v2 is an ancestor of v1.

Usage

AlgRank(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG.
- v2 (int) : vertex of the active MTG.

Returns int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined at the same scale, an error value None is returned.

See also:

```
MTG(), Rank(), Order(), Height(), EdgeType(), AlgHeight(), AlgOrder().
```

openalea.mtg.aml.Alpha (e1, e2)

```
openalea.mtg.aml.Ancestors (v, EdgeType='*', RestrictedTo='NoRestriction', ContainedIn=None)
Array of all vertices which are ancestors of a given vertex
```

This function returns the array of vertices which are located before the vertex passed as an argument. These vertices are defined at the same scale as v. The array starts by v, then contains the vertices on the path from v back to the root (in this order) and finishes by the tree root.

Note: The anscestor array always contains at least the argument vertex v.

Usage

Ancestors(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father
- EdgeType (str): cf. Father

Returns list of vertices's id (int)

Examples

See also:

MTG(), Descendants().

openalea.mtg.aml.**Axis**(v, Scale=-1)

Array of vertices constituting a botanical axis

An axis is a maximal sequence of vertices connected by '<'-type edges. Axis return the array of vertices representing the botanical axis which the argument v belongs to. The optional argument enables the user to choose the scale at which the axis decomposition is required.

Usage

```
Axis(v)
Axis(v, Scale=s)
```

Parameters

• v (int) : Vertex of the active MTG

Optional Parameters

• Scale (str): scale at which the axis components are required.

Returns list of vertices ids

See also:

MTG(), Path(), Ancestors().

openalea.mtg.aml.**Beta**(*e1*, *e2*)

openalea.mtg.aml.BottomCoord(e1,e2)

openalea.mtg.aml.BottomDiameter(e1, e2)

openalea.mtg.aml.**Class**(vid) Class of a vertex

The *Class()* of a vertex is a feature always defined and independent of time (like the index). It is represented by an alphabetic character in upper or lower case (lower cases characters are considered different from upper

cases). The label of a vertex is the string defined by the concatenation of its class and its index. The label thus provides general information about a vertex and enables us to encode the plant components.

Usage

>>> Class(v)

Parameters

• vid (int) : vertex of the active MTG

Returns The class of the vertex.

See also:

MTG(), Index(), Scale().

openalea.mtg.aml.ClassScale(c)

Scale at which appears a given class of vertex

Every vertex is associated with a unique class. Vertices from a given class only appear at a given scale which can be retrieved using this function.

Usage

ClassScale(c)

Parameters

• c (str) : symbol of the considered class

Returns int

See also:

MTG(), Class(), Scale(), Index().

```
openalea.mtg.aml.Complex(v, Scale=-1)
```

Complex of a vertex.

Returns the complex of v. The complex of a vertex v has a scale lower than v : Scale(v) - 1. In a MTG, every vertex except for the MTG root (cf. *MTGRoot*), has a uniq complex. None is returned if the argument is the MTG Root or if the vertex is undefined.

Usage

```
Complex(v)
Complex(v, Scale=2)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (int) : scale of the complex

Returns Returns vertex's id (int)

Details When a scale different form Scale(v)-1 is specified using the optional parameter *Scale*, this scale must be lower than that of the vertex argument.

Todo: Complex(v, Scale=10) returns v why ? is this expected

See also:

```
MTG(), Components().
```

openalea.mtg.aml.ComponentRoots(v, Scale=-1)

Set of roots of the tree graphs that compose a vertex

In a MTG, a vertex may have be decomposed into components. Some of these components are connected to each other, while other are not. In the most general case, the components of a vertex are organized into several tree-graphs. This is for example the case of a MTG containing the description of several plants: the MTG root vertex can be decomposed into tree graphs (not connected) that represent the different plants. This function returns the set of roots of these tree graphs at scale Scale(v)+1. The order of these roots is not significant.

When a scale different from Scale(v)+1 is specified using the optional argument Scale(), this scale must be greater than that of the vertex argument.

Usage

```
ComponentRoots(v)
ComponentRoots(v, Scale=s)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (str): scale of the component roots.

Returns list of vertices's id (int)

Examples

```
>>> v=MTGRoot() # global MTG root
0
>>> ComponentRoots(v) # set of first vertices at scale 1
[1,34,76,100,199,255]
>>> ComponentRoots(v, Scale=2) # set of first vertices at scale 2
[2,35,77,101,200,256]
```


MTG(), Components(), Trunk().

openalea.mtg.aml.Components(v, Scale=-1)

Set of components of a vertex.

The set of components of a vertex is returned as a list of vertices. If s defines the scale of v, components are defined at scale s + 1. The array is empty if the vertex has no components. The order of the components in the array is not significant.

When a scale is specified using optional argument :arg:Scale, it must be necessarily greater than the scale of the argument.

Usage

Components(v) Components(v, Scale=2)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

• Scale (int) : scale of the components.

Returns list of int


```
See also:
```

```
MTG(), Complex().
```

```
openalea.mtg.aml.Coord(e1, e2)
```

```
openalea.mtg.aml.DateSample(e1)
Array of observation dates of a vertex.
```

Returns the set of dates at which a given vertex (passed as an argument) has been observed as an array of ordered dates. Options can be specified to define a temporal window and the total list of observation dates will be truncated according to the corresponding temporal window.

Usage

```
DateSample(v)
DateSample(v, MinDate=d1, MaxDate=d2)
```

Parameters

• v (VTX) : vertex of the active MTG.

Optional Parameters

- MinDate (date) : defines a minimum date of interest.
- MaxDate (date) : defines a maximum date of interest.

Returns list of date

See also:

MTG(), FirstDefinedFeature(), LastDefinedFeature(), PreviousDate(), NextDate().

```
openalea.mtg.aml.Defined(vid)
```

Test whether a given vertex belongs to the active MTG.

Usage

Defined(v)

Parameters

• v (int) : vertex of the active MTG

Returns True or False

See also:

MTG().

openalea.mtg.aml.**Descendants**(v, EdgeType='*', RestrictedTo='NoRestriction', ContainedIn=None) Set of vertices in the branching system borne by a vertex.

This function returns the set of descendants of its argument as an array of vertices. The array thus consists of all the vertices, at the same scale as v, that belong to the branching system starting at v. The order of the vertices in the array is not significant.

Note: The argument always belongs to the set of its descendants.

Usage

Descendants(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father
- EdgeType (str): cf. Father

Returns list of int.

Examples

```
>>> v
78
>>> Sons(v) # set of sons of v
[78,99,101]
>>> Descendants(v) # set of descendants of v
[78,99,101,121,133,135,156,171,190]
```



```
See also:
```

MTG(), Ancestors().

```
openalea.mtg.aml.DressingData(e1)
```

Use openalea.mtg.dresser.DressingData instead of this function

```
openalea.mtg.aml.EdgeType(v1, v2)
```

Type of connection between two vertices.

Returns the symbol of the type of connection between two vertices (either < or +). If the vertices are not connected, None is returned.

Usage

EdgeType(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns '<' (successor), '+' (branching) or None

MTG(), Sons(), Father().

openalea.mtg.aml.**Extremities** (*v*, *RestrictedTo='NoRestriction'*, *ContainedIn=None*) Set of vertices that are the extremities of the branching system born by a given vertex.

This function returns the extremities of the branching system defined by the argument as a list of vertices. These vertices have the same scale as v and their order in the list is not signifiant. The result is always a non empty array.

Usage

Extremities(v)

Properties

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father()
- ContainedIn (int): cf. Father()

Returns list of vertices's id (int)

Examples

```
>>> Descendants(v)
[3, 45, 47, 78, 102]
>>> Extremities(v)
[47, 102]
```

See also:

```
MTG(), Descendants(), Root(), MTGRoot().
```

Topological father of a given vertex.

Returns the topological father of a given vertex. And *None* if the father does not exist. If the argument is not a valid vertex, *None* is returned.

Usage

```
Father(v)
Father(v, EdgeType='<')
Father(v, RestrictedTo='SameComplex')
Father(v, ContainedIn=complex_id)
Father(v, Scale=s)</pre>
```

Parameters v (int) : vertex of the active MTG

Optional Parameters If no optional argument is specified, the function returns the topological father of the argument (vertex that bears or precedes to the vertex passed as an argument).

It may be usefull in some cases to consider that the function only applies to a subpart of the MTG (e.g. an axis).

The following options enables us to specify such restrictions:

• EdgeType (str) : filter on the type of edge that connect the vertex to its father.

Values can be '<', '+', and '*'. Values '*' means both '<' and '+'. Only the vertex connected with the specified type of edge will be considered.

• RestrictedTo (str) : filter defining a subpart of the MTG where the father must be considered. If the father is actually outside this subpart, the result is *None*. Possible subparts are defined using keywords in ['SameComplex', 'SameAxis', 'NoRestriction'].

For instance, if *RestrictedTo* is set to 'SameComplex', Father (v) () returns a defined vertex only if the father f of v exists in the MTG and if v and f have the same complex.

• ContainedIn (int) : filter defining a subpart of the MTG where the father must be considered. If the father is actually outside this subpart, the result is *None*.

In this case, the subpart of the MTG is made of the vertices that composed *composite_id* (at any scale).

• Scale (int) : the scale of the considered father. Returns the vertex from scale *s* which either bears and precedes the argument.

The scale *s* can be lower than the argument's (corresponding to a question such as 'which axis bears the internode?') or greater (e.g. 'which internodes bears this annual shoot?').

Returns the vertex id of the Father (int)

See also:

MTG(), Defined(), Sons(), EdgeType(), Complex(), Components().

openalea.mtg.aml.Feature (vid, fname, date=None)

Extracts the attributes of a vertex.

Returns the value of the attribute *fname* of a vertex in a MTG.

If the value of an attribute is not defined in the coding file, the value None is returned.

Usage

```
Feature(vid, fname)
Feature(vid, fname, date)
```

Parameters

- vid (int) : vertex of the active MTG.
- fname (str) : name of the attribute (as specified in the coding file).
- date (date) : (for a dynamic MTG) date at which the attribute of the vertex is considered.

Returns int, str, date or float

Details If for a given attribute, several values are available(corresponding to different dates), the date of interest must be specified as a third attribute.

This date must be a valid date appearing in the coding file for a considered vertex. Otherwise *None* is returned.

Background MTGs and Dynamic MTGs.

Todo: specify the format of *date*

See also:

```
MTG(), Class(), Index(), Scale().
```

```
openalea.mtg.aml.FirstDefinedFeature(e1, e2)
```

Date of first observation of a vertex.

Returns the date *d* for which the attribute *fname* is defined for the first time on the vertex *v* passed as an argument. This date must be greater than the option *MinDate* and/or less than the maximum *MaxData* when specified. Otherwise the returned date is None.

Usage

```
FirstDefinedFeature(v, fname)
FirstDefinedFeature(v, fname, MinDate=d1, MaxDate=d2)
```

Properties

- v (int) : vertex of the active MTG
- fname (str) : name of the considered property

Optional Properties

- MinDate (date) : minimum date of interest.
- MaxData (date) : maximum date of interest.

```
Returns date
```

See also:

MTG(), DateSample(), LastDefinedFeature(), PreviousDate(), NextDate().

openalea.mtg.aml.Height(v1, v2=None)

Number of components existing between two components in a tree graph.

The height of a vertex (v2) with respect to another vertex (v1) is the number of edges (of either type '+' or '<') that must be crossed when going from v1 to v2 in the graph.

This is a non-negative integer. When the function has only one argument v1, the height of v1 correspond to the height of v1 with respect to the root of the branching system containing 'v1.

Usage

Height(v1) Height(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that one is an ancestor of the other. When the order is relevant, use function *AlgHeight*.

See also:

```
MTG(), Order(), Rank(), EdgeType(), AlgHeight(), AlgHeight(), AlgOrder().
```

openalea.mtg.aml.Index(vid)

Index of a vertex

The *Index()* of a vertex is a feature always defined and independent of time (like the index). It is represented by a non negative integer. The label of a vertex is the string defined by the concatenation of its class and its index. The label thus provides general information about a vertex and enables us to encode the plant components.

Usage

>>> Index(v)

Parameters

• vid (int) : vertex of the active MTG

Returns int

See also:

MTG(), Class(), Scale()

```
openalea.mtg.aml.Label(v)
    Label of a vertex
```

Usage

>>> Label(v) #doctest: +SKIP

Parameters

• vid (int) : vertex of the active MTG

Returns The class and Index of the vertex (str).

MTG(), Index(), Class()

openalea.mtg.aml.LastDefinedFeature(e1, e2)

Date of last observation of a given attribute of a vertex.

Returns the date d for which the attribute *fname* is defined for the last time on the vertex v passed as an argument. This date must be greater than the option *MinDate* and/or less than the maximum *MaxData* when specified. Otherwise the returned date is None.

Usage

```
FirstDefinedFeature(v, fname)
FirstDefinedFeature(v, fname, MinDate=d1, MaxDate=d2)
```

Properties

- v (int) : vertex of the active MTG
- fname (str) : name of the considered property

Optional Properties

- MinDate (date) : minimum date of interest.
- MaxData (date) : maximum date of interest.

Returns date

See also:

MTG(), DateSample(), FirstDefinedFeature(), PreviousDate(), NextDate().

openalea.mtg.aml.Length(*e1*, *e2*)

openalea.mtg.aml.Location(v, Scale=-1, ContainedIn=None)

Vertex defining the father of a vertex with maximum scale.

If no options are supplied, this function returns the vertex defining the father of a vertex with maximum scale (cf. *Father()*). If it does not exist, None is returned. If a scale is specified, the function is equivalent to *Father(v, Scale=s)*.

Usage

```
Location(v)
Location(v, Scale=s)
Location(v, ContainedIn=complex_id)
```

Parameters

• v (int) : vertex of the active MTG.

Optional Parameters

- Scale (int) : scale at which the location is required.
- ContainedIn (int) : cf. Father()

Returns Returns vertex's id (int)

Examples

```
>>> Father(v, EdgeType='+')
7
>>> Complex(v)
4
>>> Components(7)
[9,19,23, 34, 77, 89]
>>> Location(v)
23
>>> Location(v, Scale= Scale(v)+1)
23
>>> Location(v, Scale= Scale(v))
7
>>> Location(v, Scale= Scale(v)-1)
4
```

MTG(), Father().

openalea.mtg.aml.MTG(filename)

MTG constructor.

Builds a MTG from a coding file (text file) containing the description of one or several plants.

Usage

MTG(filename)

Parameters

- filename (str): name of the coding file describing the mtg
- **Returns** If the parsing process succeeds, returns an object of type *MTG()*. Otherwise, an error is generated, and the formerly active *MTG* remains active.
- **Side Effect** If the *MTG()* is built, the new *MTG()* becomes the active *MTG()* (i.e. the *MTG()* implicitly used by other functions such as *Father()*, *Sons()*, *VtxList()*,...).
- **Details** The parsing process is approximatively proportional to the number of components defined in the coding file.

Background MTG is an acronyme for Multiscale Tree Graph.

See also:

Activate() and all openalea.mtg.aml functions.

```
openalea.mtg.aml.MTGRoot()
Returns the root vertex of the MTG.
```

It is the only vertex at scale 0 (the coarsest scale).

Usage

>>> MTGRoot()

Returns

• vtx identifier

Details This vertex is the complex of all vertices from scale 1. It is a mean to refer to the entire database.

MTG(), Complex(), Components(), Scale().

openalea.mtg.aml.NextDate(e1)

Next date at which a vertex has been observed after a specified date

Returns the first observation date at which the vertex has been observed starting at date d and proceeding forward in time. None is returned if it does not exists.

Usage

NextDate(v, d)

Parameters

- v (int) : vertex of the active MTG.
- d (date) : departure date.

Returns date

See also:

```
MTG(), DateSample(), FirstDefinedFeature(), LastDefinedFeature(),
PreviousDate().
```

openalea.mtg.aml.Order(v1, v2=None)

Order of a vertex in a graph.

The order of a vertex (v2) with respect to another vertex (v1) is the number of edges of either type '+' that must be crossed when going from v1 to v2 in the graph. This is thus a non negative integer which corresponds to the "botanical order".

When the function only has one argument v1, the order of v1 correspond to the order of v1 with respect to the root of the branching system containing v1.

Usage

```
Order(v1)
Order(v1, v2)
```

Parameters

- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns int

Note: When the function takes two arguments, the order of the arguments is not important provided that one is an ancestor of the other. When the order is relevant, use function AlgOrder().

Warning: The value returned by function Order is 0 for trunks, 1 for branches etc. This might be different with some botanical conventions where 1 is the order of the trunk, 2 the order of branches, etc.

See also:

MTG(), Rank(), Height(), EdgeType(), AlgOrder(), AlgRank(), AlgHeight().

openalea.mtg.aml.**PDir**(*e1*, *e2*)

openalea.mtg.aml.**Path**(v1,v2)

List of vertices defining the path between two vertices

This function returns the list of vertices defining the path between two vertices that are in an ancestor relationship. The vertex v1 must be an ancestor of vertex v2. Otherwise, if both vertices are valid, then the empty array is returned and if at least one vertex is undefined, None is returned.

Usage

Path(v1, v2)

Parameters

- *v1* (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns list of vertices's id (int)

Examples

```
>>> v # print the value of v
78
>>> Ancestors(v)
[78,45,32,10,4]
>>> Path(10,v)
[10,32,45,78]
>>> Path(9,v) # 9 is not an ancestor of 78
[]
```

Note: v1 can be equal to v2.

See also:

MTG(), Axis(), Ancestors().

openalea.mtg.aml.**PlantFrame** (*e1*) Use openalea.mtg.plantframe.PlantFrame instead of this function

openalea.mtg.aml.**Plot**(*e1*)

openalea.mtg.aml.**Predecessor**(*v*, ***kwds*) Father of a vertex connected to it by a '<' edge

This function is equivalent to Father(v, EdgeType-> '<'). It thus returns the father (at the same scale) of the argument if it is located in the same botanical. If it does not exist, None is returned.

Usage

Predecessor(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns return the vertex id (int)

Examples

```
>>> Predecessor(v)
7
>>> Father(v, EdgeType='+')
>>> Father(v, EdgeType-> '<')
7</pre>
```

See also:

MTG(), Father(), Successor().

openalea.mtg.aml.**PreviousDate**(*e1*)

Previous date at which a vertex has been observed after a specified date.

Returns the first observation date at which the vertex has been observed starting at date d and proceeding backward in time. None is returned if it does not exists.

Usage

```
PreviousDate(v, d)
```

Parameters

- v (int) : vertex of the active MTG.
- d (date) : departure date.

Returns date

See also:

MTG(), DateSample(), FirstDefinedFeature(), LastDefinedFeature(), NextDate().

openalea.mtg.aml.Rank(v1, v2=None)

Rank of one vertex with respect to another one.

This function returns the number of consecutive '<'-type edges between two components, at the same scale, and does not take into account the order of vertices v1 and v2. The result is a non negative integer.

Usage

Rank(v1) Rank(v1, v2)

Parameters

- v1 (int) : vertex of the active MTG
- v2 (int) : vertex of the active MTG

Returns int

If v1 is not an ancestor of v2 (or vise versa) within the same botanical axis, or if v1 and v2 are not defined at the same scale, an error value Undef id returned.

See also:

MTG(), Order(), Height(), EdgeType(), AlgRank(), AlgHeight(), AlgOrder().

```
openalea.mtg.aml.RelBottomCoord(e1, e2)
```

```
openalea.mtg.aml.RelTopCoord(e1, e2)
```

```
openalea.mtg.aml.Root (v, RestrictedTo='*', ContainedIn=None)
    Root of the branching system containing a vertex
```

This function is equivalent to Ancestors(v, EdgeType='<')[-1]. It thus returns the root of the branching system containing the argument. This function never returns None.

Usage

Root(v)

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns return vertex's id (int)

Examples

```
>>> Ancestors(v) # set of ancestors of v
[102,78,35,33,24,12]
>>> Root(v) # root of the branching system containing v
12
```


MTG(), Extremities().

openalea.mtg.aml.**SDir**(*e1*, *e2*)

```
openalea.mtg.aml.Scale(vid)
Scale of a vertex
```

Returns the scale at which is defined the argument.

Usage

>>> Scale(vid)

Parameters

- vid (int) : vertex of the active MTG
- vid (PlantFrame) : a PlantFrame object computed on the active MTG
- vid (LineTree) : a LineTree computed on a PlantFrame representing the active MTG

Returns int

See also:

```
MTG(), ClassScale(), Class(), Index().
```

openalea.mtg.aml.Sons(v, RestrictedTo='NoRestriction', EdgeType='*', Scale=-1, ContainedIn=None)

Set of vertices born or preceded by a vertex

The set of sons of a given vertex is returned as an array of vertices. The order of the vertices in the array is not significant. The array can be empty if there are no son vertices.

Usage

```
from openalea.mtg.aml import Sons
Sons(v)
Sons(v, EdgeType= '+')
Sons(v, Scale= 3)
```

Parameters

• v (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str) : cf. Father
- ContainedIn (int) : cf. Father
- EdgeType (str) : filter on the type of sons.
- Scale (int) : set the scale at which sons are considered.

Returns list(vid)

Details When the option EdgeType is applied, the function returns the set of sons that are connected to the argument with the specified type of relation.

Note: Sons(v, EdgeType= '<') is not equivalent to Successor(v). The first function returns an array of vertices while the second function returns a vertex.

The returned vertices have the same scale as the argument. However, coarser or finer vertices can be obtained by specifying the optional argument *Scale* at which the sons are considered.

Examples

```
>>> Sons(v)
[3,45,47,78,102]
>>> Sons(v, EdgeType= '+') # set of vertices borne by v
[3,45,47,102]
>>> Sons(v, EdgeType= '<') # set of successors of v on the same axis
[78]</pre>
```

See also:

```
MTG(), Father(), Successor(), Descendants().
```

openalea.mtg.aml.**Successor** (*v*, *RestrictedTo='NoRestriction'*, *ContainedIn=None*) Vertex that is connected to a given vertex by a '<' edge type (i.e. in the same botanical axis).

This function is equivalent to Sons(v, EdgeType='<')[0]. It returns the vertex that is connected to a given vertex by a '<' edge type (i.e. in the same botanical axis). If many such vertices exist, an arbitrary one is returned by the function. If no such vertex exists, None is returned.

Usage

Successor(v)

Parameters

• v1 (int) : vertex of the active MTG

Optional Parameters

- RestrictedTo (str): cf. Father
- ContainedIn (int): cf. Father

Returns Returns vertex's id (int)

Examples

```
>>> Sons(v)
[3, 45, 47, 78, 102]
>>> Sons(v, EdgeType='+') # set of vertices borne by v
[3, 45, 47, 102]
>>> Sons(v, EdgeType-> '<') # set of successors of v
[78]
>>> Successor(v)
78
```

See also:

```
MTG(), Sons(), Predecessor().
```

openalea.mtg.aml.**TopCoord**(*e1*, *e2*)

openalea.mtg.aml.**TopDiameter**(*e1*, *e2*)

```
openalea.mtg.aml.Trunk(v, Scale=-1)
```

List of vertices constituting the bearing botanical axis of a branching system.

Trunk returns the list of vertices representing the botanical axis defined as the bearing axis of the whole branching system defined by v. The optional argument enables the user to choose the scale at which the trunk should be detailed.

Usage

```
Trunk(v)
Trunk(v, Scale= s)
```

Parameters

• *v* (int) : Vertex of the active MTG.

Optional Parameters

• Scale (str): scale at which the axis components are required.

Returns list of vertices ids

Todo: check the usage of the optional argument Scale

See also:

```
MTG(), Path(), Ancestors(), Axis().
```

```
openalea.mtg.aml.VirtualPattern(e1)
```

```
openalea.mtg.aml.VtxList (Scale=-1)
Array of vertices contained in a MTG
```

The set of all vertices in the *MTG()* is returned as an array. Vertices from all scales are returned if no option is used. The order of the elements in this array is not significant.

Usage

```
>>> VtxList()
>>> VtxList(Scale=2)
```

Optional Parameters

• Scale (int): used to select components at a particular scale.

Returns

list of vid

Background MTGs()

See also:

MTG(), Scale(), Class(), Index().

Download the source file .../.../src/mtg/aml.py.

4.3 Reading and writing MTG

4.3.1 MTG

The MTG data structure can be read/write from/to a MTG file format. The functions read_mtg(), write_mtg(), read_mtg_file().

openalea.mtg.io.read_mtg(s, mtg=None, has_date=False)
Create an MTG from its string representation in the MTG format.

Parameter

• s (string) - a multi-lines string

Return an MTG

Example

```
f = open('test.mtg')
txt = f.read()
g = read_mtg(txt)
```

See also:

read_mtg_file().

openalea.mtg.io.read_mtg_file (fn, mtg=None, has_date=False)
Create an MTG from a filename.

Usage

>>> g = read_mtg_file('test.mtg')

See also:

read_mtg().

openalea.mtg.io.write_mtg(g, properties=[], class_at_scale=None, nb_tab=None, display_id=False) Transform on MTC into a multiplice string in the MTC format

Transform an MTG into a multi-line string in the MTG format.

This method build a generic header, then traverses the MTG and transform each vertex into a line with its label, topoloical relationship and specific *properties*.

Parameters

- *g* (MTG)
- *properties* (list): a list of tuples associating a property name with its type. Only these properties will be written in the out file.

Optional Parameters

- class_at_scale (dict(name->int)): a map between a class name and its scale. If class _at_scale is None, its value will be computed from g.
- *nb_tab* (int): the number of tabs used to write the code.
- *display_id* (bool): display the id for each vertex

Returns a list of strings.

Example

4.3.2 LPy

The two functions lpy2mtg() and mtg2lpy() allow to convert the MTG data-structure into lpy and vise-versa. It ease the communication between the two modules. Each structure are traversed and the properties are copied. Properties can be any pyton object.

openalea.mtg.io.lpy2mtg(axial_tree, lsystem, scene=None)

openalea.mtg.io.mtg2lpy (g, lsystem, axial_tree=None)
Create an AxialTree from a MTG with scales.

Usage

tree = mtg2lpy(g,lsystem)

Parameters

- g: The mtg which have been generated by an LSystem.
- *lsystem*: A lsystem object containing various information. The *lsystem* is only used to retrieve the context and the parameters associated with each module name.

Optional Parameters

• *axial_tree*: an empty axial tree. It is used to avoid complex import in the code.

Return axial tree

mtg2axialtree()

4.3.3 AxialTree

openalea.mtg.io.**axialtree2mtg**(*tree*, *scale*, *scene*, *parameters=None*)

Create an MTG from an AxialTree.

Tha axial tree has been generated by LPy. It contains both modules with parameters. The geometry is provided by the scene. The shape ids are the same that the module ids in the axial tree. For each module name in the axial tree, a *scale* and a list of parameters should be defined. The *scale* dict allow to add a module at a given scale in the MTG. The *parameters* dict map for each module name a list of parameter name that are added to the MTG.

Parameters

- tree: The axial tree generated by the L-system
- scale: A dict containing the scale for each symbol name.
- scene: The scene containing the geometry.
- parameters: list of parameter names for each module.

Return mtg

Example

```
tree # axial tree
scales = {}
scales['P'] = 1
scales['A'] = 2
scales['GU'] = 3
params ={}
params['P'] = []
params['A'] = ['length', 'radius']
params['GU'] = ['nb_flower']
g = axialtree2mtg(tree, scales, scene, params)
```

See also:

```
mtg2axialtree(), lpy2mtg(), mtg2lpy()
```

openalea.mtg.io.mtg2axialtree(g, parameters=None, axial_tree=None)
Create a MTG from an AxialTree with scales.

Parameters

- *axial_tree*: The axial tree managed by the L-system. Use an empty AxialTree if you do not want to concatenate this axial_tree with previous results.
- parameters: list of parameter names for each module.

Return mtg

Example

```
params = dict()
params ['P'] = []
params['A'] = ['length', radius']
```

(continues on next page)

(continued from previous page)

```
params['GU']=['nb_flower']
tree = mtg2axialtree(g, params)
```

See also:

```
axialtree2mtg(), mtg2lpy()
```

4.3.4 Cpfg

Read a string generated by a lsystem.

Parameters

- string: The lsystem string representing the axial tree.
- *symbol_at_scale*: A dict containing the scale for each symbol name.

Optional parameters

• *functional_symbol*: A dict containing a function for specific symbols. The args of the function have to be coherent with those in the string. The return type of the functions have to be a dictionary of properties: dict(name, value)

Return MTG object

4.3.5 Mss

openalea.mtg.io.**mtg2mss** (*name*, *mtg*, *scene*, *envelop_type='CvxHull'*) Convert an MTG into the multi-scale structure implemented by fractalysis.

Parameters

- *name*: name of the structure
- *mtg*: the mtg to convert
- scene: the scene containing the geometry
- *envelop_type*: algorithm used to fit the geometry.between scales.

Returns mss data structure.

Download the source file .../.../src/mtg/io.py.

4.4 Traversal methods on tree and MTG

Tree and MTG Traversals

```
class openalea.mtg.traversal.Visitor
```

Bases: object

Used during a tree traversal.

```
post_order(vtx_id)
```

pre_order(vtx_id)

openalea.mtg.traversal.iter_mtg(mtg,vtx_id)

Iterate on an MTG by traversiong *vtx_id* and all its components.

This function traverse a complex before its components and a parent before its children.

Usage

```
for vid in iter_mtg(g,g.root):
    print vid
```

Parameters

- *mtg*: the multi-scale graph
- *vtx_id*: the root of the sub-mtg which is traversed.

Returns iter of vid.

Traverse all the vertices contained in the sub_mtg defined by vtx_id.

See also:

iter_mtg2(), iter_mtg_with_filter(), iter_mtg2_with_filter().

Note: Do not use this function. Use *iter_mtg2()* instead. If several trees belong to *vtx_id*, only the first one will be traversed.

Note: This is a recursive implementation. It can be problematic for large MTG with lots of scales (e.g. >40).

```
openalea.mtg.traversal.iter_mtg2 (mtg, vtx_id)
```

Iterate on an MTG by traversiong vtx_id and all its components.

This function traverse a complex before its components and a parent before its children.

Usage

```
for vid in iter_mtg2(g,g.root):
    print vid
```

Parameters

- *mtg*: the multi-scale graph
- *vtx_id*: the root of the sub-mtg which is traversed.

Returns iter of vid.

Traverse all the vertices contained in the sub_mtg defined by vtx_id.

See also:

iter_mtg(), iter_mtg_with_filter(), iter_mtg2_with_filter()

Note: Use this function instead of *iter_mtg()*

Iterate on an MTG by traversiong *vtx_id* and all its components.

If defined, apply the two visitor functions before and after having visited all the successor of a vertex.

This function traverse a complex before its components and a parent before its children.

Usage

```
def pre_order_visitor(vid):
    print vid
    return True
def post_order_visitor(vid):
    print vid
for vid in iter_mtg_with_filter(g,g.root, pre_order_visitor, post_order_visitor):
    pass
```

Parameters

- *mtg*: the multi-scale graph
- vtx_id: the root of the sub-mtg which is traversed.

Optional Parameters

- *pre_order_visitor*: function called before traversing the children or components. This function returns a boolean. If False, the sub-mtg rooted on the vertex is skipped.
- *post_order_visitor* : function called after the traversal of all the children and components.

Returns iter of vid.

Traverse all the vertices contained in the sub_mtg defined by vtx_id.

See also:

```
iter_mtg(), iter_mtg2(), iter_mtg2_with_filter()
```

Note: Use this function instead of *iter_mtg_with_filter()*

Iterate on an MTG by traversiong *vtx_id* and all its components.

If defined, apply the two visitor functions before and after having visited all the successor of a vertex.

This function traverse a complex before its components and a parent before its children.

Usage

```
def pre_order_visitor(vid):
    print vid
    return True
def post_order_visitor(vid):
    print vid
for vid in iter_mtg_with_filter(g,g.root, pre_order_visitor, post_order_visitor):
    pass
```

Parameters

- *mtg*: the multi-scale graph
- *vtx_id*: the root of the sub-mtg which is traversed.

Optional Parameters

- *pre_order_visitor*: function called before traversing the children or components. This function returns a boolean. If False, the sub-mtg rooted on the vertex is skipped.
- *post_order_visitor* : function called after the traversal of all the children and components.

Returns iter of vid.

Traverse all the vertices contained in the sub_mtg defined by vtx_id.

See also:

iter_mtg(), iter_mtg2(), iter_mtg2_with_filter()

Note: Do not use this function. Instead use *iter_mtg2_with_filter()*

Warning: Do not use. This function may be removed in other version.

Warning: Do not use. This function may be removed in other version.

openalea.mtg.traversal.**post_order** (*tree*, *vtx_id*, *complex=None*, *visitor_filter=None*) Traverse a tree in a postfix way. (from leaves to root) This is a recursive implementation

Traverse a tree in a postfix way. (from leaves to root)

Same algorithm than post_order. The goal is to replace the post_order implementation.

openalea.mtg.traversal.pre_order(tree, vtx_id, complex=None, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)

This is a non recursive implementation.

openalea.mtg.traversal.pre_order2 (tree, vtx_id, complex=None, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)

This is an iterative implementation.

openalea.mtg.traversal.**pre_order2_with_filter**(*tree*, *vtx_id*, *complex=None*,

pre_order_filter=None,

post_order_visitor=None)

Same algorithm than pre_order2. The goal is to replace the pre_order2 implementation.

The problem is for the pre_order filter when it is also a visitor

openalea.mtg.traversal.pre_order_in_scale (tree, vtx_id, visitor_filter=None)
Traverse a tree in a prefix way. (root then children)

This is a non recursive implementation.

```
openalea.mtg.traversal.pre_order_with_filter(tree, vtx_id, pre_order_filter=None,
```

post_order_visitor=None)

Traverse a tree in a prefix way. (root then children)

This is an iterative implementation.

TODO: make the naming and the arguments more consistent and user friendly. pre_order_filter is a functor which has to return a boolean. If the return value is False, the vertex is not visited. Otherelse, some computation can be done.

The post_order_visitor is used to execute, store, compute a function when the tree rooted on the vertex has been visited.

openalea.mtg.traversal.topological_sort(g, vtx_id, visited=None)

Topological sort of a directed acyclic graph.

This is not a fully recursive implementation.

```
openalea.mtg.traversal.traverse_tree (tree, vtx_id, visitor)
Traverse a tree in a prefix or postfix way.
```

We call a visitor for each vertex. This is usefull for printing, computing or storing vertices in a specific order.

See boost.graph.

Download the source file .../.../src/mtg/traversal.py.

4.5 Common algorithms

Implementation of a set of algorithms for the MTG datastructure

openalea.mtg.algo.alg_height(g, v1, v2=None)

openalea.mtg.algo.alg_order(g, v1, v2=None)

openalea.mtg.algo.alg_rank(g, v1, v2=None)

openalea.mtg.algo.**ancestors** (*g*, *vid*, ***kwds*) Return the vertices from vid to the root.

Parameters

- g: a tree or an MTG
- *vid*: a vertex id which belongs to g

Returns an iterator from *vid* to the root of the tree.

```
openalea.mtg.algo.axis(g, vtx_id, scale=-1, **kwds)
TODO: see aml doc
```

openalea.mtg.algo.descendants (g, vtx_id, scale=-1, **kwds)
TODO: see aml doc

openalea.mtg.algo.edge_type(g, v)

openalea.mtg.algo.**extremities** (g, vid, **kwds) TODO see aml doc Implement the method more efficiently...

```
openalea.mtg.algo.father (g, vid, scale=-1, **kwds)
   See aml.Father function.
openalea.mtg.algo.full_ancestors (g, v1, **kwds)
   Return the vertices from v1 to the root.
openalea.mtg.algo.height (g, v1, v2=None)
openalea.mtg.algo.heights (g, scale=-1)
   Compute the order of all vertices at scale scale.
   If scale == -1, the compute the order for vertices at the finer scale.
openalea.mtg.algo.local_axis (g, vtx_id, scale=-1, **kwds)
   Return a sequence of vertices connected by '<' edges. The first element of the sequence is vtx_id.
openalea.mtg.algo.location (g, vid, **kwds)
   TODO: see doc aml.Location.
openalea.mtg.algo.lookForCommonAncestor (g, commonAncestors, currentNode)</pre>
```

```
openalea.mtg.algo.lowestCommonAncestor(g, nodes)
        LCA algorithm
```

```
openalea.mtg.algo.order(g, v1, v2=None)
```

openalea.mtg.algo.orders(g, scale=-1)

Compute the order of all vertices at scale *scale*.

If scale == -1, the compute the order for vertices at the finer scale.

```
openalea.mtg.algo.path(g, vid1, vid2=None)
```

Compute the vertices between v1 and v2. If v2 is None, return the path between v1 and the root. Otherelse, return the path between v1 and v2. If the graph is oriented from v1 to v2, sign is positive. Else, sign is negative.

openalea.mtg.algo.**predecessor**(g, vid, **kwds)

```
openalea.mtg.algo.rank(g, v1, v2=None)
```

```
openalea.mtg.algo.root (g, vid, RestrictedTo='NoRestriction', ContainedIn=None)
TODO: see aml.Root doc string.
```

```
openalea.mtg.algo.sons (g, vid, **kwds)
TODO: see doc aml.sons.
```

```
openalea.mtg.algo.split (g, scale=1)
    Split at scale.
```

```
openalea.mtg.algo.successor(g, vid, **kwds)
TODO: see aml.Successor doc string.
```

openalea.mtg.algo.topological_path(g, v1, v2=None, edge=None)

```
openalea.mtg.algo.trunk(g, vtx_id, scale=-1, **kwds)
```

openalea.mtg.algo.**union** (*g1*, *g2*, *vid1=None*, *vid2=None*, *edge_type='*<') Return the union of the MTGs g1 and g2.

Parameters

- g1, g2 (MTG) : An MTG graph
- vid1 : the anchor vertex identid=fier that belong to g1
- vid2 : the root of the sub_mtg that belong to g2 which will be added to g1.
- edge_type (str) : the type of the edge which will connect vid1 to vid2

openalea.mtg.algo.vertex_at_scale (g, vtx_id, scale)
Download the source file ../../src/mtg/algo.py.

4.6 Graphical representation of MTG

4.6.1 PlantFrame

openalea.mtg.PlantFrame

4.6.2 DressingData

4.6.3 3D Plot

Plot a PlantFrame.

```
Download the source files ../../src/mtg/plantframe/plantframe.py, ../../src/mtg/
plantframe/dresser.py, ../../src/mtg/plantframe/turtle.py,
```

4.7 utilities (plots)

Different utilities such as plot2D, plot3D, and so on...

```
openalea.mtg.util.mtg_plot(g, scales=1)
```

openalea.mtg.util.plot2d(g, image_name, scale=None, orientation=90)
Compute an image of the tree via graphviz.

Parameters

- g (int) : an MTG object
- *image_name* (str) : output filename e.g. test.png

Optional parameters

- scale (int): represents the MTG's scale to look at (default max)
- orientation (int): orientation angle (default 90)

openalea.mtg.util.plot3d(g, scale=None)

Compute a 3d view of the MTG in a simple way:

• sphere for the nodes and thin cylinder for the edges.

openalea.mtg.util.plot_nx(g, *args, **kwds)

Download the source file .../.../src/mtg/util.py.

CHAPTER 5

Credits

5.1 Lead Developer

• Christophe Pradal, <christophe pradal __at__ cirad fr>

5.2 Contributors

- Christophe Godin, <christophe godin __at__ inria fr> (Concepts, Design, Previous implementation, Documentation)
- Thomas Cokelaer <thomas cokelaer __at__ isp fr> (Docmentation)

CHAPTER 6

Indices and tables

- genindex
- modindex
- search

Python Module Index

0

openalea.mtg.algo,311 openalea.mtg.aml,281 openalea.mtg.traversal,307 openalea.mtg.util,313

Index

А

Activate() (in module openalea.mtg.aml), 281 Active() (in module openalea.mtg.aml), 281 add_child() (openalea.mtg.mtg.MTG method), 267 add child and complex() (openalea.mtg.mtg.MTG method), 267 add_child_tree() (openalea.mtg.mtg.MTG method), 267 add_component() (openalea.mtg.mtg.MTG method), 267add_element() (openalea.mtg.mtg.MTG method), 267 add_property() (openalea.mtg.mtg.MTG method), 268 alg_height() (in module openalea.mtg.algo), 311 alg_order() (in module openalea.mtg.algo), 311 alg_rank() (in module openalea.mtg.algo), 311 AlgHeight() (in module openalea.mtg.aml), 282 AlgHeight () (openalea.mtg.mtg.MTG method), 251 AlgOrder() (in module openalea.mtg.aml), 282 AlgOrder() (openalea.mtg.mtg.MTG method), 251 AlgRank() (in module openalea.mtg.aml), 282 AlgRank() (openalea.mtg.mtg.MTG method), 252 Alpha() (in module openalea.mtg.aml), 283 ancestors() (in module openalea.mtg.algo), 311 Ancestors () (in module openalea.mtg.aml), 283 Ancestors () (openalea.mtg.mtg.MTG method), 252 axialtree2mtg() (in module openalea.mtg.io), 306 axis() (in module openalea.mtg.algo), 311 Axis() (in module openalea.mtg.aml), 284 Axis() (openalea.mtg.mtg.MTG method), 253 В

backward_rewriting_traversal() (openalea.mtg.mtg.MTG method), 268 Beta() (in module openalea.mtg.aml), 284 BottomCoord() (in module openalea.mtg.aml), 284 BottomDiameter() (in module openalea.mtg.aml), 284

С

children() (openalea.mtg.mtg.MTG method), 268 children_iter() (openalea.mtg.mtg.MTG method), 268 Class() (in module openalea.mtg.aml), 284 Class() (openalea.mtg.mtg.MTG method), 254 class_name() (openalea.mtg.mtg.MTG method), 268 ClassScale() (in module openalea.mtg.aml), 285 ClassScale() (openalea.mtg.mtg.MTG method), 254 clear() (openalea.mtg.mtg.MTG method), 268 clear_properties() (openalea.mtg.mtg.MTG method), 269 colored_tree() (in module openalea.mtg.mtg), 280 Complex() (in module openalea.mtg.aml), 285 Complex() (openalea.mtg.mtg.MTG method), 255 complex() (openalea.mtg.mtg.MTG method), 269 complex_at_scale() (openalea.mtg.mtg.MTG method), 269 component_roots() (openalea.mtg.mtg.MTG method), 269 component_roots_at_scale() (openalea.mtg.mtg.MTG method), 269 component_roots_at_scale_iter() (openalea.mtg.mtg.MTG method), 269 component_roots_iter() (openalea.mtg.mtg.MTG method), 269 ComponentRoots() (in module openalea.mtg.aml), 286 ComponentRoots() (openalea.mtg.mtg.MTG method), 255 Components () (in module openalea.mtg.aml), 287 Components () (openalea.mtg.mtg.MTG method), 256 components() (openalea.mtg.mtg.MTG method), 269 components_at_scale() (openalea.mtg.mtg.MTG method), 269 components_at_scale_iter() (openalea.mtg.mtg.MTG method), 269

components_iter() (openalea.mtg.mtg.MTG method), 270

Coord() (in module openalea.mtg.aml), 288 copy() (openalea.mtg.mtg.MTG method), 270

D

DateSample() (in module openalea.mtg.aml), 288
Defined() (in module openalea.mtg.aml), 288
Defined() (openalea.mtg.mtg.MTG method), 257
descendants() (in module openalea.mtg.algo), 311
Descendants() (in module openalea.mtg.aml), 289
Descendants() (openalea.mtg.mtg.MTG method), 257
display() (openalea.mtg.mtg.MTG method), 270
display_mtg() (in module openalea.mtg.mtg), 281
display_tree() (in module openalea.mtg.mtg), 280
DressingData() (in module openalea.mtg.aml), 290

E

edge_type() (in module openalea.mtg.algo), 311
edge_type() (openalea.mtg.mtg.MTG method), 270
edges() (openalea.mtg.mtg.MTG method), 270
EdgeType() (in module openalea.mtg.aml), 290
EdgeType() (openalea.mtg.mtg.MTG method), 258
extremities() (in module openalea.mtg.algo), 311
Extremities() (in module openalea.mtg.aml), 291
Extremities() (openalea.mtg.mtg.MTG method), 259

F

- father() (in module openalea.mtg.algo), 311
 Father() (in module openalea.mtg.aml), 291
 Father() (openalea.mtg.mtg.MTG method), 260
 Feature() (in module openalea.mtg.aml), 292
 FirstDefinedFeature() (in module openalea.mtg.aml), 293
 forward_rewriting_traversal() (openalea.mtg.mtg.MTG method), 270
 full ancestors() (in module openalea.mtg.algo),
- 312 Incestors () (in module openalea.mig.algo),

G

Η

has_vertex() (openalea.mtg.mtg.MTG method), 270
height() (in module openalea.mtg.algo), 312
Height() (in module openalea.mtg.aml), 293
Height() (openalea.mtg.MTG method), 260
heights() (in module openalea.mtg.algo), 312

- Index() (in module openalea.mtg.aml), 294
- Index() (openalea.mtg.mtg.MTG method), 261
- index() (openalea.mtg.mtg.MTG method), 271

- is_leaf() (openalea.mtg.mtg.MTG method), 272
- is_valid() (openalea.mtg.mtg.MTG method), 272
- iter_edges() (openalea.mtg.mtg.MTG method), 272
- iter_mtg() (in module openalea.mtg.traversal), 308
- iter_mtg2() (in module openalea.mtg.traversal), 308

iter_mtg2_with_filter() (in module openalea.mtg.traversal), 308

- iter_mtg_with_filter() (in module openalea.mtg.traversal), 309

iteredges() (openalea.mtg.mtg.MTG method), 272

L

Label() (in module openalea.mtg.aml), 294 Label() (openalea.mtg.mtg.MTG method), 261 label() (openalea.mtg.mtg.MTG method), 272 LastDefinedFeature() (in module openalea.mtg.aml), 295 Length () (in module openalea.mtg.aml), 295 local_axis() (in module openalea.mtg.algo), 312 location() (in module openalea.mtg.algo), 312 Location() (in module openalea.mtg.aml), 295 lookForCommonAncestor() (in module openalea.mtg.algo), 312

lowestCommonAncestor() (in module openalea.mtg.algo), 312

lpy2mtg() (in module openalea.mtg.io), 305

Μ

max_scale() (openalea.mtg.mtg.MTG method), 272
MTG (class in openalea.mtg.mtg), 250
MTG() (in module openalea.mtg.aml), 296
MTG() (in module openalea.mtg.mtg), 249
mtg2axialtree() (in module openalea.mtg.io), 306
mtg2lpy() (in module openalea.mtg.io), 307
mtg_plot() (in module openalea.mtg.util), 313
MTGRoot() (in module openalea.mtg.aml), 296

Ν

- nb_children() (*openalea.mtg.mtg.MTG method*), 273
- nb_components() (*openalea.mtg.mtg.MTG method*), 273
- nb_scales() (openalea.mtg.mtg.MTG method), 273
- nb_siblings() (openalea.mtg.mtg.MTG method), 273
- nb_vertices() (openalea.mtg.mtg.MTG method), 273
- NextDate() (in module openalea.mtg.aml), 297
- node() (openalea.mtg.mtg.MTG method), 273

0

openalea.mtg.algo (module), 311 openalea.mtg.aml (module), 281 openalea.mtg.traversal (module), 307 openalea.mtg.util (module), 313 order() (in module openalea.mtg.algo), 312 Order() (in module openalea.mtg.aml), 297 order() (in module openalea.mtg.algo), 312

Ρ

parent() (openalea.mtg.mtg.MTG method), 274 path() (in module openalea.mtg.algo), 312 Path() (in module openalea.mtg.aml), 298 Path() (openalea.mtg.mtg.MTG method), 261 PDir() (in module openalea.mtg.aml), 298 PlantFrame (in module openalea.mtg), 313 PlantFrame() (in module openalea.mtg.aml), 299 Plot () (in module openalea.mtg.aml), 299 plot2d() (in module openalea.mtg.util), 313 plot3d() (in module openalea.mtg.util), 313 plot_nx() (in module openalea.mtg.util), 313 plot_property() (openalea.mtg.mtg.MTG method), 274 post_order() (in module openalea.mtg.traversal), 310 post_order() (openalea.mtg.traversal.Visitor *method*), 307post_order2() (in module openalea.mtg.traversal), 310 pre_order() (in module openalea.mtg.traversal), 310 pre_order() (openalea.mtg.traversal.Visitor *method*), 307 pre_order2() (in module openalea.mtg.traversal), 310 pre_order2_with_filter() (in module openalea.mtg.traversal), 310 pre_order_in_scale() module (in openalea.mtg.traversal), 310 pre_order_with_filter() (in module openalea.mtg.traversal), 311

- predecessor() (in module openalea.mtg.algo), 312
- Predecessor() (in module openalea.mtg.aml), 299

Predecessor() (openalea.mtg.mtg.MTG method), 262

- PreviousDate() (in module openalea.mtg.aml), 299
- properties() (openalea.mtg.mtg.MTG method), 274
- property() (openalea.mtg.mtg.MTG method), 274
- property_names() (openalea.mtg.mtg.MTG method), 274

R

- random_mtg() (in module openalea.mtg.mtg), 280
- random_tree() (in module openalea.mtg.mtg), 279
- rank() (in module openalea.mtg.algo), 312
- Rank () (in module openalea.mtg.aml), 299
- Rank () (openalea.mtg.mtg.MTG method), 263
- read_lsystem_string() (in module openalea.mtg.io), 307
- read_mtg() (in module openalea.mtg.io), 304
- read_mtg_file() (in module openalea.mtg.io), 304
- reindex() (openalea.mtg.mtg.MTG method), 274
- RelBottomCoord() (in module openalea.mtg.aml), 300
- RelTopCoord() (in module openalea.mtg.aml), 300
- remove_property() (openalea.mtg.mtg.MTG method), 275
- remove_scale() (openalea.mtg.mtg.MTG method),
 275
- remove_tree() (openalea.mtg.mtg.MTG method),
 275
- remove_vertex() (openalea.mtg.mtg.MTG method),
 275
- replace_parent() (openalea.mtg.mtg.MTG method), 275
- root (openalea.mtg.mtg.MTG attribute), 279
- root() (in module openalea.mtg.algo), 312
- Root () (in module openalea.mtg.aml), 300
- Root () (openalea.mtg.mtg.MTG method), 263
- roots() (openalea.mtg.mtg.MTG method), 275
- roots_iter() (openalea.mtg.mtg.MTG method), 276

S

- Scale() (in module openalea.mtg.aml), 301
- Scale() (openalea.mtg.mtg.MTG method), 264
- scale() (openalea.mtg.mtg.MTG method), 276
- scales() (openalea.mtg.mtg.MTG method), 277
- scales_iter() (openalea.mtg.mtg.MTG method),
 277
- SDir() (in module openalea.mtg.aml), 301
- set_root() (openalea.mtg.mtg.MTG method), 277
- siblings() (openalea.mtg.mtg.MTG method), 277

Т

TopCoord() (in module openalea.mtg.aml), 303			
TopDiameter() (in module openalea.mtg.aml), 303			
<pre>topological_path()</pre>	(in	module	ope-
nalea.mtg.algo), 312			
<pre>topological_sort()</pre>	(in	module	ope-
nalea.mtg.traversal), 311			
traverse_tree()	(in	module	ope-
nalea.mtg.traversal), 311			
trunk() (in module openalea.mtg.algo), 312			
Trunk() (in module openalea.mtg.aml), 303			

Trunk () (openalea.mtg.mtg.MTG method), 266

U

union() (in module openalea.mtg.algo), 312

V

VtxList() (openalea.mtg.mtg.MTG method), 266

W

write_mtg() (in module openalea.mtg.io), 304