

    
      
          
            
  
Welcome to openalea.mtg’s documentation!

Contents:



	Install

	Use

	MTG User Guide
	1. Quick Start to manipulate MTGs

	2. The openalea.mtg.aml module: Long Tour

	3. MTG file

	4. Illustration: exploring an apple tree orchard

	5. Tutorial: Create MTG file from scratch

	6. PlantFrame (3D reconstruction of plant architecture)

	7. Using MTG within VisuAlea

	8. File syntax

	9. Lsystem and MTGs





	Reference
	MTG - Multi-scale Tree Graph

	High level reporting function compatible with AML

	Reading and writing MTG

	Traversal methods on tree and MTG

	Common algorithms

	Graphical representation of MTG

	utilities (plots)





	Credits
	Lead Developer

	Contributors











Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Install

Use conda to install openalea.mtg:

conda install openalea.mtg -c openalea







Use

Simple usage:

from openalea.mtg import *








          

      

      

    

  

    
      
          
            
  
MTG User Guide


Summary


	Version:

	2.1.2



	Release:

	2.1.2



	Date:

	Apr 20, 2022



	Provides:

	MTG or Multiscale Tree Graph data structure.






In order to quickly learn how to read a MTG file and plot it with PlantGL, jump to the the Quick Start to manipulate MTGs. If you are in a hurry and want to parse the MTG to retrieve information about it, look at the The openalea.mtg.aml module: Long Tour that fully describes the openalea.mtg.aml module.

Then, we advice you to look at the section MTG file to understand what is a MTG file through a detailled description of the format and a few examples (note that the section File syntax gives a full description of the format). The section Illustration: exploring an apple tree orchard explains through a full example what can be done with the MTG data in point of view of statistical analysis.

Finally, once the MTG format is understood, you may want to create your own MTG file from scratch as described in Section Tutorial: Create MTG file from scratch.


Note

The full guide reference is also available Reference.


  
    

    1. Quick Start to manipulate MTGs
    

    

    
 
  

    
      
          
            
  
1. Quick Start to manipulate MTGs


1.1. Reading an MTG file and activate it

A plant architecture described in a coding file can be loaded in openalea.mtg.aml as follows:

>>> from openalea.mtg.aml import MTG
>>> g1 = MTG('user/agraf.mtg')          # some errors may occur while loading the MTG
ERROR: Missing component for vertex 2532






Note

In order to reproduce the example, download  agraf MTG file and the agraf DRF file.
Other files that may be required are also available in the same directory (*smb files) but are not compulsary.


  
    

    2. The openalea.mtg.aml module: Long Tour
    

    

    
 
  

    
      
          
            
  
2. The openalea.mtg.aml module: Long Tour


2.1. Reading the file

This page illustrates the usage of all the functionalities available in openalea.mtg.aml module. All
the examples uses the MTG file code_file2.mtg. If you are interested in the syntax, we stronly recommend
you to look at Section MTG file.

First, let us read the MTG file with the function MTG(). Note that only one MTG object can be manipulated at a time. This MTG object is the active MTG.


[image: ../_images/fig3_4.png]

Figure 1: Graphical representation of the MTG file code_file2.mtg used as an input file to all examples contained in this page



>>> from openalea.mtg.aml import *
>>> g = MTG('user/code_file2.mtg')
>>> Active() == g
True





The Active() function checks that g is currently the active MTG.

If a new MTG file is read, it becomes the new active MTG object. However, the function Activate() can be use to switch between MTG objects as follows:

>>> h = MTG('user/agraf.mtg')
>>> Active() == h
True
>>> Activate(g)





>>> MTGRoot()
0







2.2. Feature functions


2.2.1. Order, Rank and Height

Order() (AlgOrder()) look at the number of + sign that need to be crossed before reaching the vertex considered

>>> Order(3)
0
>>> Order(14)
1
>>> AlgOrder(3,14)
1





Height() (AlgHeight()) look at the number of components between the root of the vertex’s branch and the vertex’s position.

>>> Height(3)
0
>>> Height(14)
10
>>> AlgHeight(3, 14)
10





Rank() (AlgRank()) returns the number  < sign that need to be crosssed before reaching the vertex considered.

>>> Rank(3)
0
>>> Rank(14)
4
>>> AlgRank(3, 14)
5







2.2.2. Class(), Index(), Label(), Feature()

Class() gives the type of vertex usually defined by a letter

>>> Class(3)
'I'





and Index() gives the other part of the label

>>> Index(3)
1





When speaking about multiscale tree graph, we also want to access the Scale():

>>> Scale(3)
3





A new function called Label() combines the Class and Index:

>>> Label(3)
'I1'





Finally, Feature() returns value of a given feature coded in the MTG file.

>>> Feature(2, "Len")
10.0







2.2.3. ClassScale(), EdgeType(), Defined()

ClassScale() returns the Scale at which appears a given class of vertex:

>>> ClassScale('U')
3





EdgeType() returns the type of connection between two vertices (e.g., +, <)

>>> i=8; Class(i), Index(i)
('I', 6)
>>> i=9; Class(i), Index(i)
('U', 1)
>>> EdgeType(8,9)
'+'





Defined() tests whether a vertex’s id is present in the active MTG

>>> Defined(1)
True
>>> Defined(100000)
False








2.3. Date functions

The following function requires MTG files to contain Date information.


Todo

not yet implemented


  
    

    3. MTG file
    

    

    
 
  

    
      
          
            
  
Contents


	MTG file


	MTG: a Plant Architecture Databases


	Overview


	Explanations






	Coding Individuals


	Exploration: a simple example


	Reading the MTG file


	3D representation


	Example 1


	Example 2






	Extraction of plant entity features


	Extracting more information from plant databases






	Types of extracted data


	Statistical exploration and model building using other Openalea/VPlants packages


	Bibliography










3. MTG file

openalea.mtg provides a Multiscale Tree Graph data structure (MTG) that is compatible with the standard MTG format that was defined in the AMAPmod software.
For compatibility reasons, the same interfaces have been implemented in this package. However, this is a completly new implementation written in Python that will evolve
by adding new functionalities and algorthims.


3.1. MTG: a Plant Architecture Databases


3.1.1. Overview

In OpenAlea/VPlants projects, plants are formally represented by multiscale tree graphs (MTGs) [20].
A MTG consists of a set of layered tree graphs,
representing plant topology at different scales (internodes, growth units, axes, etc.).

To build up MTGs from plants, plants are first broken down into plant components,
organised in different scales (Figure3.2.a and Figure3.2.b).
Components are given labels that specify their types
(Figure3.2.b, U = growth unit, F = flowering site, S = short shoot, I = internode).
These labels are then used to encode the plant architecture into a textual form.
The resulting coding file (Figure3.2.c) can then be analysed by openalea.mtg tools to build
the corresponding MTG (Figure3.2.d).


[image: ../_images/fig3_2_a.png]

Figure 3.2,a Starting from real plants, measurements are made.




[image: ../_images/fig3_2_b.png]

Figure 3.2.b Plants components are identified and labelled (e.g, U for growth unit)




[image: ../_images/fig3_2_d.png]

Figure 3.2.c The plant components and their attributes are encoded in a MTG file




[image: ../_images/fig3_2_c.png]

Figure 3.2.d A MTG representing the branching system can be built from the MTG. The plant representation at annual shoot scale is in red and at growth unit in yellow.





3.1.2. Explanations

In an MTG, the organisation of plant components at a given scale of detail is represented by a tree graph, where each component is represented by a vertex in the graph and edges represent the physical connections between them. At any given scale, the plant components are linked by two types of relation, corresponding to the two basic mechanisms of plant growth, namely the apical growth and the branching processes. Apical growth is responsible for the creation of axes, by producing new components (corresponding to new portions of stem and leaves) on top of previous components. The connection between two components resulting from the apical growth is a precedes relation and is denoted by a < character.

On the other hand, the branching process is responsible for the creation of axillary buds
(these buds can then create axillary axes with their own apical growth).
The connection between two components resulting from the branching process
is a bears relation and is denoted by a + character.
A MTG integrates – within a unique model – the different tree graph representations
that correspond to the different scales at which the plant is described.

Various types of attribute can be attached to the plant components represented in the MTG,
at any scale. Attributes may be geometrical
(e.g., diameter of a stem, surface area of a leaf or 3D positioning of a plant component)
or morphological (e.g., number of flowers, nature of the associated leaf,
type of axillary production - latent bud, short shoot or long shoot -).

MTGs can be constructed from field observations using textual encoding of the plant
architecture as described in [22] (see Figure3.2.a).
Alternatively, code files representing plant architectures can also be constructed
from simulation programs that generate artificial plants,
or directly from any Python program, as we will illustrate it in the Tutorial: Create MTG file from scratch.


Todo

fix the internal link reference


  
    

    4. Illustration: exploring an apple tree orchard
    

    

    
 
  

    
      
          
            
  
4. Illustration: exploring an apple tree orchard


Todo

This section has to be validated (e.g., translate aml code into python)


  
    

    5. Tutorial: Create MTG file from scratch
    

    

    
 
  

    
      
          
            
  
5. Tutorial: Create MTG file from scratch

This tutorial briefly introduces the main features of the package
and should show you the contents and potential of the openalea.mtg library.

All the examples can be tested in a Python interpreter.


5.1. MTG creation


Let us consider the following example:




	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import openalea.mtg as mtg

g = mtg.MTG()

print len(g)
print g.nb_vertices()
print g.nb_scales()

root = g.root
print g.scale(root)








	First, the package is imported (line 1).


	Then, a mtg is instantiated without parameters (line 3).


	However, as for a Tree, the mtg is not empty (line 5-7).


	There is always a root node at scale 0 (line 9-10).






5.2. Simple edition

We add a component root1 to the root node, which will be the root node of the tree
at the scale 1.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	root1 = g.add_component(root)

# Edit the tree at scale 1 by adding three children
# to the vertex `root1`.
v1 = g.add_child(root1)
v2 = g.add_child(root1)
v3 = g.add_child(root1)

g.parent(v1) == root1
g.complex(v1) == root
v3 in g.siblings(v1)









5.3. Traversing the mtg at one scale

The mtg can be traversed at any scales like a regular tree.
Their are three traversal algorithms working on Tree data structures (container_algo_traversal):



	pre_order


	post_order


	level_order







These methods take as parameters a tree like data structure, and a vertex.
They will traverse the subtree rooted on this vertex in a specific order.
They will return an iterator on the traversed vertices.

	1
2
3
4
5
6
7

	from openalea.container.traversal.tree import *

print list(g.components(root))

print list(pre_order(g, root1))
print list(post_order(g, root1))
print list(level_order(g, root1))








Warning

On MTG data structure, methods that return collection of vertices
always return an iterator rather than list [https://docs.python.org/3.4/library/stdtypes.html#list], array, or set [https://docs.python.org/3.4/library/stdtypes.html#set].

You have to convert the iterator into a list [https://docs.python.org/3.4/library/stdtypes.html#list] if you want to display it,
or compute its length.

>>> print len(g.components(root)) #doctest: +SKIP
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: object of type 'generator' has no len()





Use rather:

>>> components = list(g.components(root)) #doctest: +SKIP
>>> print components #doctest: +SKIP
[1, 2, 3, 4]






  
    

    6. PlantFrame (3D reconstruction of plant architecture)
    

    

    
 
  

    
      
          
            
  
6. PlantFrame (3D reconstruction of plant architecture)


Section contents

In this section, we introduce the PlantFrame [http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=documentation:demo:mtg_reconstruction&s[]=plantframe]
vocabulary that we use through-out vplants and give a
series of examples.



6.1. The problem setting

PlantFrame is a method to compute the geometry of each organ of a Plant Architecture.
Geoemtrical data is associated to some vertices of the architecture (aka MTG).
But often, geometrical information is missing on some vertex.
Constraints have to be solved to compute missing values.


	The stages of the PlantFrame are:

	
	Insert a scale at the axis level.


	Project all the constraints at the finer scale.


	Apply different Knowledge Sources (i.e. KS) on the MTG to compute the values at some nodes.


	Solve the constraints.


	Visualise the geometry using a 3D Turtle.










6.2. Where are the data?


The tutorial package comes with a few datasets. The data are in
share/data/PlantFrame directory from the root.

>>> import openalea.mtg
>>> from openalea.deploy.shared_data import shared_data
>>> import vplants.tutorial
>>> data = shared_data(vplants.tutorial)/'PlantFrame'










6.3. Visualisation of a digitized Tree

First, we load the digitized Walnut noylum2.mtg

>>> from openalea.mtg import *
>>> g = MTG(data/'noylum2.mtg')





Then, a file containing a set of default geometric parameters is loaded to build a
DressingData (walnut.drf )

>>> drf = data/'walnut.drf'
>>> dressing_data = dresser.dressing_data_from_file(drf)





Another solution is to create the default parameters directly


	::

	>>> dressing_data = plantframe.DressingData(DiameterUnit=10)









Geometric parameters are missing. How to compute them?
Use the PlantFrame, a geometric solver working on multiscale tree structure.

Create the solver and solve the problem

>>> pf = plantframe.PlantFrame(g,
                       TopDiameter='TopDia',
                       DressingData = dressing_data)





Visualise the plant in 3D

>>> pf.plot(gc=True)





[image: diagram of estimated HMT model]


6.4. Simple visualisation of a monopodial plant

First,  we load the MTG monopodial_plant.mtg

>>> from openalea.mtg import *
>>> g = MTG(data/'monopodial_plant.mtg')





>>> def coloring(mtg, vertex):
        try:
            mtg.property('diam')[vertex]
            return "g"
        except: return "r"

>>> def legend(mtg, vertex):
        try:
            return "diam: "+str(mtg.property('diam')[vertex])
        except: return "diam: NA"

>>> def label(mtg, vertex):
        return mtg.label(vertex)

>>> g.plot(roots=4, node=dict(fc=coloring, label=label, legend=legend), prog="dot")





[image: PlantFrame]
>>> def legend(mtg, vertex):
        try:
            return "diam: "+str(mtg.property('diam')[vertex])
        except: return "diam: NA"

>>> g.plot(roots=4, node=dict(fc=coloring, label=label, legend=legend), prog="dot")





[image: PlantFrame]
The mtg monopodial_plant.mtg is loaded. To draw it, just run:

>>> pf = plantframe.PlantFrame(g, TopDiameter='diam')
>>> pf.plot()





[image: PlantFrame]
You can also define a function to compute the diameter:

>>> def diam(v):
        d = g.node(v).diam
        return d/10. if d else None
>>> pf = plantframe.PlantFrame(g, TopDiameter=diam)
>>> pf.plot()





[image: PlantFrame]
The diameter is defined for each vertex of the MTG.
To take into account the diameter, we have to define a visitor function.

diam = g.property('diam')

def visitor(g, v, turtle):
    if g.edge_type(v) == '+':
        angle = 90 if g.order(v) == 1 else 30
        turtle.down(angle)
    turtle.setId(v)
    if v in diam:
        turtle.setWidth(diam[v]/2.)
    turtle.F(10)
    turtle.rollL()

pf = plantframe.PlantFrame(g)
pf.plot(g, visitor=visitor)





[image: PlantFrame]




          

      

      

    

  

  
    

    7. Using MTG within VisuAlea
    

    

    
 
  

    
      
          
            
  
7. Using MTG within VisuAlea

Nodes have been implemented within VisuAlea so as to manipulate MTG files. See OpenAlea wiki [http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=packages:vplants:mtg:mtg] for examples and details about VisuAlea.

The following dataflows illustrates how MTG files can be manipulated within VisuAlea.


[image: ../_images/plantanalysischain.png]

MTG manipulation within VisuAlea






          

      

      

    

  

  
    

    8. File syntax
    

    

    
 
  

    
      
          
            
  
8. File syntax


Todo

revise the entire document to check tabulation of the examples


  
    

    9. Lsystem and MTGs
    

    

    
 
  

    
      
          
            
  
9. Lsystem and MTGs


	Author:

	Thomas Cokelaer <Thomas.Cokelaer@sophia.inria.fr>






Contents


	Lsystem and MTGs


	General usage


	Extract information from the lsystem


	axiom


	context


	last iteration






	Activate the lsystem with makecurrent


	Executing the lsystem


	animate


	iterate






	Transform the lstring/axialtree into MTG and vice-versa


	lpy2mtg method


	axialtree2mtg method


	mtg2lpy and lpy2mtg method













Let us start from the following L-system

angle = 20

context().turtle.setAngleIncrement(angle)

Axiom: X

def EndEach(lstring):

    print lstring

derivation length: 7
production:
X --> F[+X]F[-X]+X
F --> FF


homomorphism:

F --> SetWidth(0.5) F

endlsystem






9.1. General usage

First, import some modules

import openalea.lpy as lpy
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import time
from openalea.plantgl.all import *
from openalea.mtg.io import lpy2mtg, mtg2lpy, axialtree2mtg, mtg2axialtree
from openalea.mtg.aml import *





and then, read the lsystem:

>>> l = lpy.Lsystem('example.lpy')





execute it:

>>> tree = l.iterate() 
F[+X]F[-X]+X...





and plot the results:

>>> l.plot(tree)





that you can save into a PNG file as follows:

>>> Viewer.frameGL.saveImage('output.png', 'png')





[image: ../_images/output.png]


9.2. Extract information from the lsystem


9.2.1. axiom

Get the axiom into an axialtree object:

l.axiom







9.2.2. context

context gets the production rules, group, iteration number

>>> context = l.context()
>>> context.getGroup()
0
>>> context.getIterationNb()
6







9.2.3. last iteration

If the Lsystem finished nornally, the last iteration must be equal to the derivation length.

>>> l.getLastIterationNb()
6
>>> l.derivationLength
7








9.3. Activate the lsystem with makecurrent


Todo

what is this for ?


  
    

    Bibliography
    

    

    
 
  

    
      
          
            
  
Bibliography


[1]
1998.
Architecture et modélisation en arboriculture fruitière, Actes du 11ème colloque sur les recherches fruitières. INRA-Ctifl, Montpellier, France.



[2]
Barthélémy, D., 1991.
Levels of organization and repetition phenomena in seed plants. Acta Biotheoretica, 39: 309-323.



[3]
Bouchon, J., de Reffye, P. et Barthélémy, D. (Eds), 1997.
Modélisation et simulation de l’architecture des végétaux. Science Update. INRA Editions, Paris, France, 435 pp.



[4]
Caraglio, Y. et Dabadie, P., 1989.
Le peuplier. Quelques aspects de son architecture. In: ” Architecture, structure, mécanique de l’arbre ” Premier séminaire interne, Montpellier (FRA) 01/89, pp. 94-107.



[5]
Cilas, C., Guédon, Y., Montagnon, C. et de Reffye, P., 1998.
Analyse du suivi de croissance d’un cultivar de caférier (Coffea canephora Pierre) en Côte d’Ivoire. In: Architecture et modélisation en arboriculture fruitière, 11ème colloque sur les recherches fruitières, Montpellier, France 5-6/03/1998, INRA-Ctifl, pp. 45-55.



[6]
Costes, E. et Guedon, Y., 1997.
Modelling the sylleptic branching on one-year-old trunks of apple cultivars. Journal of the American Society for Horticultural Science, 122(1): 53-62.



[7]
Costes, E., Sinoquet, H., Godin, C. et Kelner, J.J., 1999.
3D digitizing based on tree topology : application to study th variability of apple quality within the canopy. Acta Horticulturae, in press.



[8]
de Reffye, P., 1982.
Modèle Mathématique aléatoire et simulation de la croissance et de l’architecture du caféier Robusta. 3ème Partie. Etude de la ramification sylleptique des rameaux primaires et de la ramification proleptique des rameaux secondaires. Café Cacao Thé, 26(2): 77-96.



[9]
de Reffye, P., Dinouard, P. et Barthélémy, D., 1991.
Modélisation et simulation de l’architecture de l’Orme du Japon Zelkova serrata (Thunb.) Makino (Ulmaceae): la notion d’axe de référence. In: 2ème Colloque International sur l’Arbre, Montpellier (FRA) 9-14/09/90. Naturalia Monspeliensa, Vol. hors-série, pp. 251-266.



[10]
de Reffye, P., Edelin, C., Françon, J., Jaeger, M. et Puech, C., 1988.
Plant models faithful to botanical structure and development. In: SIGGRAPH’88, Atlanta (USA) 1-15/08/88. C.G.S.C. Proceedings, Vol. 22, pp. 151-158.



[11]
de Reffye, P. et al., 1995.
A model simulating above- and below- ground tree architecture with agroforestry applications. In: Agroforestry : Science; Policy and Practice, 20th IUFRO World Congress, F.L. Sinclair (Ed.), Tampere, Finlande 06-12/08/1995. Agroforestry Systems, Vol. 30, pp. 175-197.



[12]
Dempster, A.P., Laird, N.M. et Rubin, D.B., 1977.
Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39: 1-38.



[13]
Ferraro, P. et Godin, C., 1998.
Un algorithme de comparaison d’arborescences non ordonnées appliqué à la comparaison de la structure topologique des plantes. In: SFC’98, Recueil des Actes, Montpellier, France 21-23/09/1998, Agro Monpellier, pp. 77-81.



[14]
Ferraro, P. et Godin, C., 1999.
A distance measure between plant architectures. Annales des Sciences Forestières: accepté.



[15]
Fisher, J.B. et Weeks, C.L., 1985.
Tree architecture of Neea (Nyctaginaceae) : geometry and simulation of branches and the presence of two different models. Bulletin du Muséum National d’Histoire Naturelle, section B Adansonia, 7(4): 385-401.



[16]
Fitter, A.H., 1987.
An architectural approach to the comparative ecology of plant root systems. New Phytologist, 106(Suppl.): 61-77.



[17]
Fournier, D., Guédon, Y. et Costes, E., 1998.
A comparison of different fruiting shoots of peach trees. In: IVth International Peach Symposium, Bordeaux, France , Vol. 465(2), pp. 557-565.



[18]
Frijters, D. et Lindenmayer, A., 1976.
Developmental descriptions of branching patterns with paraclidial relationships. In: Formal Languages, Automata and Development, G. Rozenberg et A. Lindenmayer (Eds), Noordwijkerhout, The Netherlands , North-Holland Publishing Company, pp. 57-73.



[19]
Godin, C., Bellouti, S. et Costes, E., 1996.
Restitution virtuelle de plantes réelles : un nouvel outil pour l’aide à l’analyse de données botaniques et agronomiques. In: L’interface des mondes réels et virtuels, 5èmes Journées Internationales Informatiques, Montpellier, France 22-24/05/96, pp. 369-378.



[20]
Godin, C. et Caraglio, Y., 1998.
A multiscale model of plant topological structures. Journal of Theoretical Biology, 191: 1-46.



[21]
Godin, C. et Costes, E., 1996.
How to get representations of real plants in computers for exploring their botanical organisation. In: International Symposium on Modelling in Fruit Trees and Orchard Management, Avignon (FRA) 4-8/09/95, ISHS. Acta Horticulturae, Vol. 416, pp. 45-52.



[22]
Godin, C., Costes, E. et Caraglio, Y., 1997.
Exploring plant topology structure with the AMAPmod software : an outline. Silva Fennica, 31(3): 355-366.



[23]
Godin, C., Costes, E. et Sinoquet, H., 1999.
A method for describing plant architecture which integrates topology and geometry. Annals of Botany, 84(3): 343-357.



[24]
Godin, C., Guédon, Y. et Costes, E., 1999.
Exploration of plant architecture databases with the AMAPmod software illustrated on an apple-tree bybird family. Agronomie, 19(3/4): 163-184.



[25]
Godin, C., Guédon, Y., Costes, E. et Caraglio, Y., 1997.
Measuring and analyzing plants with the AMAPmod software. In: Plants to ecosystems - Advances in Computational Life Sciences 2nd International Symposium on Computer Challenges in Life Science. M.T. Michalewicz (Ed.). CISRO Australia, Melbourne, Australie, pp. 53-84.



[26]
Guédon, Y., 1998.
Analyzing nonstationary discrete sequences using hidden semi- Markov chains. Document de travail du programme Modélisation des plantes, 5-98. CIRAD, Montpellier, France, 41 pp.



[27]
Guédon, Y., 1998.
Hidden semi-Markov chains: a new tool for analyzing nonstationary discrete sequences. In: 2nd International Symposium on Semi-Markov models: theory and applications, J. Janssen et N. Limnios (Eds), Compiègne, France 09-11/12/1998, Université de Technologie de Compiègne, pp. 1-7.



[28]
Guédon, Y., Barthélémy, D. et Caraglio, Y., 1999.
Analyzing spatial structures in forests tree architectures. In: Salamandra (Ed) Empirical and process-based models for forest tree and stand growth simulation, Oeiras, Portugal 21-27/09/1997, pp. 23-42.



[29]
Guédon, Y. et Costes, E., 1999.
A statistical approach for analyszing sequences in fruit tree architecture. In: Wagenmakers P.S., van der Werf W., Blaise Ph. (Eds), 5th International Symposium on Computer modelling in fruit research and orchard management, Wageningen, The Netherlands 28-31/07/1998. Acta Horticulturae, pp. 271-280.



[30]
Hallé, F. et Oldeman, R.A.A., 1970.
Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Monographie de Botanique et de Biologie Végétale, Vol. 6. Masson, Paris, 176 pp.



[31]
Hallé, F., Oldeman, R.A.A. et Tomlinson, P.B., 1978.
Tropical trees and forests. An architectural analysis. Springer-Verlag, New-York.



[32]
Hanan, J. et Room, P., 1997.
Practical aspects of plant research. In: Plants to ecosystems - Advances in Computational Life Sciences 2nd International Symposium on Computer Challenges in Life Science. M.T. Michalewicz (Ed.). CISRO Australia, Melbourne, Australie, pp. 28-43.



[33]
Harper, J.L., Rosen, B.R. et White, J., 1986.
The growth and form of modular organisms. The Royal Society, London.



[34]
Honda, H., 1971.
Description of the form of trees by the parameters of the tree-like body : Effects of the branching angle and the branch length on the shape of the tree-like body. Journal of Theoretical Biology, 31: 331-338.



[35]
Honda, H., Tommlinson, P. et Fisher, J.B., 1982.
Two geometrical models of branching of tropical trees. Annals of Botany, 49: 1-12.



[36]
Jackson, J.E. et Palmer, J.W., 1981.
Light distribution in discontinuous canopies: calculation of leaf areas and canopy volumes above defined irradiance contours for use in productivity modelling. Annals of Botany, 47: 561-565.



[37]
Jaeger, M. et de Reffye, P., 1992.
Basic concepts of computer simulation of plant growth. In: The 1990 Mahabaleshwar Seminar on Modern Biology, Mahabaleshwar (IND) . Journal of Biosciences, Vol. 17, pp. 275-291.



[38]
Mitchell, K.J., 1975.
Dynamics and simulated yield of Douglas-fir. Forest Science, 21(4): 1-39.



[39]
Prusinkiewicz, P. et Lindenmayer, A., 1990.
The algorithmic beauty of plants. Springer Verlag.



[40]
Prusinkiewicz, P.W., Remphrey, W.R., Davidson, C.G. et Hammel, M.S., 1994.
Modeling the architecture of expanding Fraxinus pennsylvanica shoots unsing L-systems. Canadian Journal of Botany, 72: 701-714.



[41]
Rapidel, B., 1995.
Etude expérimentale et simulation des transferts hydriques dans les plantes individuelles. Application au caféier (Coffea arabica L.). Thèse Doctorat, Université des Sciences et Techniques du Languedoc (USTL), Montpellier, France, 246 pp.



[42]
Remphrey, W.R., Neal, B.R. et Steeves, T.A., 1983.
The morphology and growth of Arctostaphylos uva-ursi (bearberry): an architectural model simulated colonizing growth. Canadian Journal of Botany, 61: 2451-2458.



[43]
Room, P. et Hanan, J., 1996.
Virtual plants: new perspectives for ecologists, pathologists and agricultural scientists. Trends in Plant Science Update, 1(1): 33-38.



[44]
Ross, J.K., 1981.
The radiation regim and the architecture of plant stands. Junk W. Pubs., The Hague, The Netherlands.



[45]
Sabatier, S., Ducousso, I., Guédon, Y., Barthélémy, D. et Germain, E., 1998.
Structure de scions d’un an de Noyer commun, Juglans regia L., variété Lara greffés sur trois porte-greffe (Juglans nigra, J. regia, J. nigra x J. regia). In: Architecture et modélisation en arboriculture fruitière, 11ème colloque sur les recherches fruitières, Montpellier, France 5-6/03/1998, INRA-Ctifl, pp. 75-84.



[46]
Sinoquet, H., Adam, B., Rivet, P. et Godin, C., 1998.
Interactions between light and plant architecture in an agroforestry walnut tree. Agroforestry Forum, 8(2): 37-40.



[47]
Sinoquet, H., Godin, C. et Costes, E., 1998.
Mesure de l’architecture par digitalisation 3D. In: Numérisation 3D, Design et digitalisation, Création industrielle et artistique, Actes du Congrès, Paris, France 27-28/05/1998.



[48]
Sinoquet, H., Rivet, P. et Godin, C., 1997.
Assessment of the three-dimensional architecture of walnut trees using digitising. Silva Fennica, 31(3): 265-273.



[49]
Sinoquet, H., Thanisawanyangkura, S., Mabrouk, H. et Kasemsap, P., 1998.
Characterisation of the light environment in canopies using 3D digitising and image processing. Annals of Botany, 82: 203-212.



[50]
Zhang, K., 1993.
A new editing based distance between unordered labeled trees. In: Combinatorial Pattern Matching CPM 93, 4th Annual Symposium, Padova, Italie 2-4/06/1993.





          

      

      

    

  

  
    

    Classes and Interfaces
    

    

    
 
  

    
      
          
            
  
Classes and Interfaces

Each data structure implement a set of specific interface.
These interfaces define the name of the methods, their semantic,
and sometime their complexity.

See openalea.mtg.mtg




          

      

      

    

  

  
    

    Algorithms
    

    

    
 
  

    
      
          
            
  
Algorithms

The openalea.mtg.mtg package provides data structure as well as algorithms.
This section introduces the reader to the main algorithms and shows simple examples.




          

      

      

    

  

  
    

    Reference
    

    

    
 
  

    
      
          
            
  
Reference



	MTG - Multi-scale Tree Graph
	Overview

	Iterating over vertices

	Adding and removing vertices

	Some usefull functions

	All





	High level reporting function compatible with AML

	Reading and writing MTG
	MTG

	LPy

	AxialTree

	Cpfg

	Mss





	Traversal methods on tree and MTG

	Common algorithms

	Graphical representation of MTG
	PlantFrame

	DressingData

	3D Plot





	utilities (plots)








          

      

      

    

  

  
    

    MTG - Multi-scale Tree Graph
    

    

    
 
  

    
      
          
            
  
MTG - Multi-scale Tree Graph


Overview


	
openalea.mtg.mtg.MTG(filename='', has_date=False)

	A Multiscale Tree Graph (MTG) class.

MTGs describe tree structures at different levels
of details, named scales.
For example, a botanist can described plants at different scales :



	at scale 0, the whole scene.


	at scale 1, the individual plants.


	at scale 2, the axes of each plants.


	at scale 3, the growth units of each axis, and so on.







Each scale can have a label, e.g. :



	scale 1 : P(lant)


	scale 2 : A(xis)


	sclae 3 : U(nit of growth)







Compared to a classical tree, complex() can be seen as parent()
and components() as children().
An element at scale() N belongs to a complex() at scale() N-1 and has components() at scale N+1:



	/P/A/U (decomposition is noted using “/”)







Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:



	/P1/P2/P3


	A1+A2<A3


	…













Iterating over vertices



	MTG.root

	Return the tree root.



	MTG.vertices([scale])

	Return a list of the vertices contained in an MTG.



	MTG.nb_vertices([scale])

	Returns the number of vertices.



	MTG.parent(vtx_id)

	Return the parent of vtx_id.



	MTG.children(vtx_id)

	returns a vertex iterator



	MTG.nb_children(vtx_id)

	returns the number of children



	MTG.siblings(vtx_id)

	returns an iterator of vtx_id siblings.



	MTG.nb_siblings(vtx_id)

	returns the number of siblings



	MTG.roots([scale])

	Returns a list of the roots of the tree graphs at a given scale.



	MTG.complex(vtx_id)

	Returns the complex of vtx_id.



	MTG.components(vid)

	returns the components of a vertex



	MTG.nb_components(vid)

	returns the number of components



	MTG.complex_at_scale(vtx_id, scale)

	Returns the complex of vtx_id at scale scale.



	MTG.components_at_scale(vid, scale)

	returns a vertex iterator








Adding and removing vertices



	MTG.__init__([filename, has_date])

	Create a new MTG object.



	MTG.add_child(parent[, child])

	Add a child to a parent.



	MTG.insert_parent(vtx_id[, parent_id])

	Insert parent_id between vtx_id and its actual parent.



	MTG.insert_sibling(vtx_id1[, vtx_id2])

	Insert a sibling of vtk_id1.



	MTG.add_component(complex_id[, component_id])

	Add a component at the end of the components



	MTG.add_child_and_complex(parent[, child, …])

	Add a child at the end of children that belong to an other complex.



	MTG.add_child_tree(parent, tree)

	Add a tree after the children of the parent vertex.



	MTG.clear()

	Remove all vertices and edges from the MTG.








Some usefull functions



	simple_tree(tree, vtx_id[, nb_children, …])

	Generate and add a regular tree to an existing one at a given vertex.



	random_tree(mtg, root[, nb_children, …])

	Generate and add a random tree to an existing one.



	random_mtg(tree, nb_scales)

	Convert a tree into an MTG of nb_scales.



	colored_tree(tree, colors)

	Compute a mtg from a tree and the list of vertices to be quotiented.



	display_tree(tree, vid[, tab, labels, edge_type])

	Display a tree structure.



	display_mtg(mtg, vid)

	Display an MTG








All


	
class openalea.mtg.mtg.MTG(filename='', has_date=False)

	Bases: openalea.mtg.tree.PropertyTree

A Multiscale Tree Graph (MTG) class.

MTGs describe tree structures at different levels
of details, named scales.
For example, a botanist can described plants at different scales :



	at scale 0, the whole scene.


	at scale 1, the individual plants.


	at scale 2, the axes of each plants.


	at scale 3, the growth units of each axis, and so on.







Each scale can have a label, e.g. :



	scale 1 : P(lant)


	scale 2 : A(xis)


	sclae 3 : U(nit of growth)







Compared to a classical tree, complex() can be seen as parent()
and components() as children().
An element at scale() N belongs to a complex() at scale() N-1 and has components() at scale N+1:



	/P/A/U (decomposition is noted using “/”)







Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:



	/P1/P2/P3


	A1+A2<A3


	…








	
AlgHeight(v1, v2)

	Algebraic value defining the number of components between two components.

This function is similar to function Height(v1, v2) : it returns the number of components
between two components, at the same scale, but takes into account the order of vertices
v1 and v2.

The result is positive if v1 is an ancestor of v2,
and negative if v2 is an ancestor of v1.


	Usage:

	




AlgHeight(v1, v2)






	Parameters:

	
	v1 (int) : vertex of the active MTG.


	v2 (int) : vertex of the active MTG.






	Returns:

	int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined
at the same scale, an error value None is returned.






See also

MTG(), Rank(), Order(), Height(), EdgeType(), AlgOrder(), AlgRank().


  
    

    High level reporting function compatible with AML
    

    

    
 
  

    
      
          
            
  
High level reporting function compatible with AML

Interface to use the new MTG implementation with the old AMAPmod interface.


	
openalea.mtg.aml.Activate(g)

	Activate a MTG already loaded into memory

All the functions of the MTG module use an implicit MTG argument
which is defined as the active MTG.

This function activates a MTG already loaded into memory which thus becomes
the implicit argument of all functions of module MTG.


	Usage:

	




>>> Activate(g)






	Parameters:

	
	g: MTG to be activated






	Details:

	When several MTGs are loaded into memory, only one is active at a time.
By default, the active MTG is the last MTG loaded using function MTG().

However, it is possib