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Install

Use conda to install openalea.mtg:

conda install openalea.mtg -c openalea







Use

Simple usage:

from openalea.mtg import *








          

      

      

    

  

    
      
          
            
  
MTG User Guide


Summary


	Version:

	2.1.2



	Release:

	2.1.2



	Date:

	Apr 20, 2022



	Provides:

	MTG or Multiscale Tree Graph data structure.






In order to quickly learn how to read a MTG file and plot it with PlantGL, jump to the the Quick Start to manipulate MTGs. If you are in a hurry and want to parse the MTG to retrieve information about it, look at the The openalea.mtg.aml module: Long Tour that fully describes the openalea.mtg.aml module.

Then, we advice you to look at the section MTG file to understand what is a MTG file through a detailled description of the format and a few examples (note that the section File syntax gives a full description of the format). The section Illustration: exploring an apple tree orchard explains through a full example what can be done with the MTG data in point of view of statistical analysis.

Finally, once the MTG format is understood, you may want to create your own MTG file from scratch as described in Section Tutorial: Create MTG file from scratch.


Note

The full guide reference is also available Reference.
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1. Quick Start to manipulate MTGs


1.1. Reading an MTG file and activate it

A plant architecture described in a coding file can be loaded in openalea.mtg.aml as follows:

>>> from openalea.mtg.aml import MTG
>>> g1 = MTG('user/agraf.mtg')          # some errors may occur while loading the MTG
ERROR: Missing component for vertex 2532






Note

In order to reproduce the example, download  agraf MTG file and the agraf DRF file.
Other files that may be required are also available in the same directory (*smb files) but are not compulsary.
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2. The openalea.mtg.aml module: Long Tour


2.1. Reading the file

This page illustrates the usage of all the functionalities available in openalea.mtg.aml module. All
the examples uses the MTG file code_file2.mtg. If you are interested in the syntax, we stronly recommend
you to look at Section MTG file.

First, let us read the MTG file with the function MTG(). Note that only one MTG object can be manipulated at a time. This MTG object is the active MTG.


[image: ../_images/fig3_4.png]

Figure 1: Graphical representation of the MTG file code_file2.mtg used as an input file to all examples contained in this page



>>> from openalea.mtg.aml import *
>>> g = MTG('user/code_file2.mtg')
>>> Active() == g
True





The Active() function checks that g is currently the active MTG.

If a new MTG file is read, it becomes the new active MTG object. However, the function Activate() can be use to switch between MTG objects as follows:

>>> h = MTG('user/agraf.mtg')
>>> Active() == h
True
>>> Activate(g)





>>> MTGRoot()
0







2.2. Feature functions


2.2.1. Order, Rank and Height

Order() (AlgOrder()) look at the number of + sign that need to be crossed before reaching the vertex considered

>>> Order(3)
0
>>> Order(14)
1
>>> AlgOrder(3,14)
1





Height() (AlgHeight()) look at the number of components between the root of the vertex’s branch and the vertex’s position.

>>> Height(3)
0
>>> Height(14)
10
>>> AlgHeight(3, 14)
10





Rank() (AlgRank()) returns the number  < sign that need to be crosssed before reaching the vertex considered.

>>> Rank(3)
0
>>> Rank(14)
4
>>> AlgRank(3, 14)
5







2.2.2. Class(), Index(), Label(), Feature()

Class() gives the type of vertex usually defined by a letter

>>> Class(3)
'I'





and Index() gives the other part of the label

>>> Index(3)
1





When speaking about multiscale tree graph, we also want to access the Scale():

>>> Scale(3)
3





A new function called Label() combines the Class and Index:

>>> Label(3)
'I1'





Finally, Feature() returns value of a given feature coded in the MTG file.

>>> Feature(2, "Len")
10.0







2.2.3. ClassScale(), EdgeType(), Defined()

ClassScale() returns the Scale at which appears a given class of vertex:

>>> ClassScale('U')
3





EdgeType() returns the type of connection between two vertices (e.g., +, <)

>>> i=8; Class(i), Index(i)
('I', 6)
>>> i=9; Class(i), Index(i)
('U', 1)
>>> EdgeType(8,9)
'+'





Defined() tests whether a vertex’s id is present in the active MTG

>>> Defined(1)
True
>>> Defined(100000)
False








2.3. Date functions

The following function requires MTG files to contain Date information.


Todo

not yet implemented
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3. MTG file

openalea.mtg provides a Multiscale Tree Graph data structure (MTG) that is compatible with the standard MTG format that was defined in the AMAPmod software.
For compatibility reasons, the same interfaces have been implemented in this package. However, this is a completly new implementation written in Python that will evolve
by adding new functionalities and algorthims.


3.1. MTG: a Plant Architecture Databases


3.1.1. Overview

In OpenAlea/VPlants projects, plants are formally represented by multiscale tree graphs (MTGs) [20].
A MTG consists of a set of layered tree graphs,
representing plant topology at different scales (internodes, growth units, axes, etc.).

To build up MTGs from plants, plants are first broken down into plant components,
organised in different scales (Figure3.2.a and Figure3.2.b).
Components are given labels that specify their types
(Figure3.2.b, U = growth unit, F = flowering site, S = short shoot, I = internode).
These labels are then used to encode the plant architecture into a textual form.
The resulting coding file (Figure3.2.c) can then be analysed by openalea.mtg tools to build
the corresponding MTG (Figure3.2.d).


[image: ../_images/fig3_2_a.png]

Figure 3.2,a Starting from real plants, measurements are made.




[image: ../_images/fig3_2_b.png]

Figure 3.2.b Plants components are identified and labelled (e.g, U for growth unit)




[image: ../_images/fig3_2_d.png]

Figure 3.2.c The plant components and their attributes are encoded in a MTG file




[image: ../_images/fig3_2_c.png]

Figure 3.2.d A MTG representing the branching system can be built from the MTG. The plant representation at annual shoot scale is in red and at growth unit in yellow.





3.1.2. Explanations

In an MTG, the organisation of plant components at a given scale of detail is represented by a tree graph, where each component is represented by a vertex in the graph and edges represent the physical connections between them. At any given scale, the plant components are linked by two types of relation, corresponding to the two basic mechanisms of plant growth, namely the apical growth and the branching processes. Apical growth is responsible for the creation of axes, by producing new components (corresponding to new portions of stem and leaves) on top of previous components. The connection between two components resulting from the apical growth is a precedes relation and is denoted by a < character.

On the other hand, the branching process is responsible for the creation of axillary buds
(these buds can then create axillary axes with their own apical growth).
The connection between two components resulting from the branching process
is a bears relation and is denoted by a + character.
A MTG integrates – within a unique model – the different tree graph representations
that correspond to the different scales at which the plant is described.

Various types of attribute can be attached to the plant components represented in the MTG,
at any scale. Attributes may be geometrical
(e.g., diameter of a stem, surface area of a leaf or 3D positioning of a plant component)
or morphological (e.g., number of flowers, nature of the associated leaf,
type of axillary production - latent bud, short shoot or long shoot -).

MTGs can be constructed from field observations using textual encoding of the plant
architecture as described in [22] (see Figure3.2.a).
Alternatively, code files representing plant architectures can also be constructed
from simulation programs that generate artificial plants,
or directly from any Python program, as we will illustrate it in the Tutorial: Create MTG file from scratch.


Todo

fix the internal link reference
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4. Illustration: exploring an apple tree orchard


Todo

This section has to be validated (e.g., translate aml code into python)
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5. Tutorial: Create MTG file from scratch

This tutorial briefly introduces the main features of the package
and should show you the contents and potential of the openalea.mtg library.

All the examples can be tested in a Python interpreter.


5.1. MTG creation


Let us consider the following example:




	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	import openalea.mtg as mtg

g = mtg.MTG()

print len(g)
print g.nb_vertices()
print g.nb_scales()

root = g.root
print g.scale(root)








	First, the package is imported (line 1).


	Then, a mtg is instantiated without parameters (line 3).


	However, as for a Tree, the mtg is not empty (line 5-7).


	There is always a root node at scale 0 (line 9-10).






5.2. Simple edition

We add a component root1 to the root node, which will be the root node of the tree
at the scale 1.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	root1 = g.add_component(root)

# Edit the tree at scale 1 by adding three children
# to the vertex `root1`.
v1 = g.add_child(root1)
v2 = g.add_child(root1)
v3 = g.add_child(root1)

g.parent(v1) == root1
g.complex(v1) == root
v3 in g.siblings(v1)









5.3. Traversing the mtg at one scale

The mtg can be traversed at any scales like a regular tree.
Their are three traversal algorithms working on Tree data structures (container_algo_traversal):



	pre_order


	post_order


	level_order







These methods take as parameters a tree like data structure, and a vertex.
They will traverse the subtree rooted on this vertex in a specific order.
They will return an iterator on the traversed vertices.

	1
2
3
4
5
6
7

	from openalea.container.traversal.tree import *

print list(g.components(root))

print list(pre_order(g, root1))
print list(post_order(g, root1))
print list(level_order(g, root1))








Warning

On MTG data structure, methods that return collection of vertices
always return an iterator rather than list [https://docs.python.org/3.4/library/stdtypes.html#list], array, or set [https://docs.python.org/3.4/library/stdtypes.html#set].

You have to convert the iterator into a list [https://docs.python.org/3.4/library/stdtypes.html#list] if you want to display it,
or compute its length.

>>> print len(g.components(root)) #doctest: +SKIP
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: object of type 'generator' has no len()





Use rather:

>>> components = list(g.components(root)) #doctest: +SKIP
>>> print components #doctest: +SKIP
[1, 2, 3, 4]
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6. PlantFrame (3D reconstruction of plant architecture)


Section contents

In this section, we introduce the PlantFrame [http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=documentation:demo:mtg_reconstruction&s[]=plantframe]
vocabulary that we use through-out vplants and give a
series of examples.



6.1. The problem setting

PlantFrame is a method to compute the geometry of each organ of a Plant Architecture.
Geoemtrical data is associated to some vertices of the architecture (aka MTG).
But often, geometrical information is missing on some vertex.
Constraints have to be solved to compute missing values.


	The stages of the PlantFrame are:

	
	Insert a scale at the axis level.


	Project all the constraints at the finer scale.


	Apply different Knowledge Sources (i.e. KS) on the MTG to compute the values at some nodes.


	Solve the constraints.


	Visualise the geometry using a 3D Turtle.










6.2. Where are the data?


The tutorial package comes with a few datasets. The data are in
share/data/PlantFrame directory from the root.

>>> import openalea.mtg
>>> from openalea.deploy.shared_data import shared_data
>>> import vplants.tutorial
>>> data = shared_data(vplants.tutorial)/'PlantFrame'










6.3. Visualisation of a digitized Tree

First, we load the digitized Walnut noylum2.mtg

>>> from openalea.mtg import *
>>> g = MTG(data/'noylum2.mtg')





Then, a file containing a set of default geometric parameters is loaded to build a
DressingData (walnut.drf )

>>> drf = data/'walnut.drf'
>>> dressing_data = dresser.dressing_data_from_file(drf)





Another solution is to create the default parameters directly


	::

	>>> dressing_data = plantframe.DressingData(DiameterUnit=10)









Geometric parameters are missing. How to compute them?
Use the PlantFrame, a geometric solver working on multiscale tree structure.

Create the solver and solve the problem

>>> pf = plantframe.PlantFrame(g,
                       TopDiameter='TopDia',
                       DressingData = dressing_data)





Visualise the plant in 3D

>>> pf.plot(gc=True)





[image: diagram of estimated HMT model]


6.4. Simple visualisation of a monopodial plant

First,  we load the MTG monopodial_plant.mtg

>>> from openalea.mtg import *
>>> g = MTG(data/'monopodial_plant.mtg')





>>> def coloring(mtg, vertex):
        try:
            mtg.property('diam')[vertex]
            return "g"
        except: return "r"

>>> def legend(mtg, vertex):
        try:
            return "diam: "+str(mtg.property('diam')[vertex])
        except: return "diam: NA"

>>> def label(mtg, vertex):
        return mtg.label(vertex)

>>> g.plot(roots=4, node=dict(fc=coloring, label=label, legend=legend), prog="dot")





[image: PlantFrame]
>>> def legend(mtg, vertex):
        try:
            return "diam: "+str(mtg.property('diam')[vertex])
        except: return "diam: NA"

>>> g.plot(roots=4, node=dict(fc=coloring, label=label, legend=legend), prog="dot")





[image: PlantFrame]
The mtg monopodial_plant.mtg is loaded. To draw it, just run:

>>> pf = plantframe.PlantFrame(g, TopDiameter='diam')
>>> pf.plot()





[image: PlantFrame]
You can also define a function to compute the diameter:

>>> def diam(v):
        d = g.node(v).diam
        return d/10. if d else None
>>> pf = plantframe.PlantFrame(g, TopDiameter=diam)
>>> pf.plot()





[image: PlantFrame]
The diameter is defined for each vertex of the MTG.
To take into account the diameter, we have to define a visitor function.

diam = g.property('diam')

def visitor(g, v, turtle):
    if g.edge_type(v) == '+':
        angle = 90 if g.order(v) == 1 else 30
        turtle.down(angle)
    turtle.setId(v)
    if v in diam:
        turtle.setWidth(diam[v]/2.)
    turtle.F(10)
    turtle.rollL()

pf = plantframe.PlantFrame(g)
pf.plot(g, visitor=visitor)





[image: PlantFrame]
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7. Using MTG within VisuAlea

Nodes have been implemented within VisuAlea so as to manipulate MTG files. See OpenAlea wiki [http://openalea.gforge.inria.fr/dokuwiki/doku.php?id=packages:vplants:mtg:mtg] for examples and details about VisuAlea.

The following dataflows illustrates how MTG files can be manipulated within VisuAlea.


[image: ../_images/plantanalysischain.png]

MTG manipulation within VisuAlea
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8. File syntax


Todo

revise the entire document to check tabulation of the examples
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9. Lsystem and MTGs


	Author:

	Thomas Cokelaer <Thomas.Cokelaer@sophia.inria.fr>






Contents


	Lsystem and MTGs


	General usage


	Extract information from the lsystem


	axiom


	context


	last iteration






	Activate the lsystem with makecurrent


	Executing the lsystem


	animate


	iterate






	Transform the lstring/axialtree into MTG and vice-versa


	lpy2mtg method


	axialtree2mtg method


	mtg2lpy and lpy2mtg method













Let us start from the following L-system

angle = 20

context().turtle.setAngleIncrement(angle)

Axiom: X

def EndEach(lstring):

    print lstring

derivation length: 7
production:
X --> F[+X]F[-X]+X
F --> FF


homomorphism:

F --> SetWidth(0.5) F

endlsystem






9.1. General usage

First, import some modules

import openalea.lpy as lpy
from PyQt4.QtCore import *
from PyQt4.QtGui import *
import time
from openalea.plantgl.all import *
from openalea.mtg.io import lpy2mtg, mtg2lpy, axialtree2mtg, mtg2axialtree
from openalea.mtg.aml import *





and then, read the lsystem:

>>> l = lpy.Lsystem('example.lpy')





execute it:

>>> tree = l.iterate() 
F[+X]F[-X]+X...





and plot the results:

>>> l.plot(tree)





that you can save into a PNG file as follows:

>>> Viewer.frameGL.saveImage('output.png', 'png')





[image: ../_images/output.png]


9.2. Extract information from the lsystem


9.2.1. axiom

Get the axiom into an axialtree object:

l.axiom







9.2.2. context

context gets the production rules, group, iteration number

>>> context = l.context()
>>> context.getGroup()
0
>>> context.getIterationNb()
6







9.2.3. last iteration

If the Lsystem finished nornally, the last iteration must be equal to the derivation length.

>>> l.getLastIterationNb()
6
>>> l.derivationLength
7








9.3. Activate the lsystem with makecurrent


Todo

what is this for ?
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Classes and Interfaces

Each data structure implement a set of specific interface.
These interfaces define the name of the methods, their semantic,
and sometime their complexity.

See openalea.mtg.mtg
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Algorithms

The openalea.mtg.mtg package provides data structure as well as algorithms.
This section introduces the reader to the main algorithms and shows simple examples.
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MTG - Multi-scale Tree Graph


Overview


	
openalea.mtg.mtg.MTG(filename='', has_date=False)

	A Multiscale Tree Graph (MTG) class.

MTGs describe tree structures at different levels
of details, named scales.
For example, a botanist can described plants at different scales :



	at scale 0, the whole scene.


	at scale 1, the individual plants.


	at scale 2, the axes of each plants.


	at scale 3, the growth units of each axis, and so on.







Each scale can have a label, e.g. :



	scale 1 : P(lant)


	scale 2 : A(xis)


	sclae 3 : U(nit of growth)







Compared to a classical tree, complex() can be seen as parent()
and components() as children().
An element at scale() N belongs to a complex() at scale() N-1 and has components() at scale N+1:



	/P/A/U (decomposition is noted using “/”)







Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:



	/P1/P2/P3


	A1+A2<A3


	…













Iterating over vertices



	MTG.root

	Return the tree root.



	MTG.vertices([scale])

	Return a list of the vertices contained in an MTG.



	MTG.nb_vertices([scale])

	Returns the number of vertices.



	MTG.parent(vtx_id)

	Return the parent of vtx_id.



	MTG.children(vtx_id)

	returns a vertex iterator



	MTG.nb_children(vtx_id)

	returns the number of children



	MTG.siblings(vtx_id)

	returns an iterator of vtx_id siblings.



	MTG.nb_siblings(vtx_id)

	returns the number of siblings



	MTG.roots([scale])

	Returns a list of the roots of the tree graphs at a given scale.



	MTG.complex(vtx_id)

	Returns the complex of vtx_id.



	MTG.components(vid)

	returns the components of a vertex



	MTG.nb_components(vid)

	returns the number of components



	MTG.complex_at_scale(vtx_id, scale)

	Returns the complex of vtx_id at scale scale.



	MTG.components_at_scale(vid, scale)

	returns a vertex iterator








Adding and removing vertices



	MTG.__init__([filename, has_date])

	Create a new MTG object.



	MTG.add_child(parent[, child])

	Add a child to a parent.



	MTG.insert_parent(vtx_id[, parent_id])

	Insert parent_id between vtx_id and its actual parent.



	MTG.insert_sibling(vtx_id1[, vtx_id2])

	Insert a sibling of vtk_id1.



	MTG.add_component(complex_id[, component_id])

	Add a component at the end of the components



	MTG.add_child_and_complex(parent[, child, …])

	Add a child at the end of children that belong to an other complex.



	MTG.add_child_tree(parent, tree)

	Add a tree after the children of the parent vertex.



	MTG.clear()

	Remove all vertices and edges from the MTG.








Some usefull functions



	simple_tree(tree, vtx_id[, nb_children, …])

	Generate and add a regular tree to an existing one at a given vertex.



	random_tree(mtg, root[, nb_children, …])

	Generate and add a random tree to an existing one.



	random_mtg(tree, nb_scales)

	Convert a tree into an MTG of nb_scales.



	colored_tree(tree, colors)

	Compute a mtg from a tree and the list of vertices to be quotiented.



	display_tree(tree, vid[, tab, labels, edge_type])

	Display a tree structure.



	display_mtg(mtg, vid)

	Display an MTG








All


	
class openalea.mtg.mtg.MTG(filename='', has_date=False)

	Bases: openalea.mtg.tree.PropertyTree

A Multiscale Tree Graph (MTG) class.

MTGs describe tree structures at different levels
of details, named scales.
For example, a botanist can described plants at different scales :



	at scale 0, the whole scene.


	at scale 1, the individual plants.


	at scale 2, the axes of each plants.


	at scale 3, the growth units of each axis, and so on.







Each scale can have a label, e.g. :



	scale 1 : P(lant)


	scale 2 : A(xis)


	sclae 3 : U(nit of growth)







Compared to a classical tree, complex() can be seen as parent()
and components() as children().
An element at scale() N belongs to a complex() at scale() N-1 and has components() at scale N+1:



	/P/A/U (decomposition is noted using “/”)







Each scale is itself described as a tree or a forest (i.e. set of trees), e.g.:



	/P1/P2/P3


	A1+A2<A3


	…








	
AlgHeight(v1, v2)

	Algebraic value defining the number of components between two components.

This function is similar to function Height(v1, v2) : it returns the number of components
between two components, at the same scale, but takes into account the order of vertices
v1 and v2.

The result is positive if v1 is an ancestor of v2,
and negative if v2 is an ancestor of v1.


	Usage:

	




AlgHeight(v1, v2)






	Parameters:

	
	v1 (int) : vertex of the active MTG.


	v2 (int) : vertex of the active MTG.






	Returns:

	int

If v1 is not an ancestor of v2 (or vise versa), or if v1 and v2 are not defined
at the same scale, an error value None is returned.






See also

MTG(), Rank(), Order(), Height(), EdgeType(), AlgOrder(), AlgRank().
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High level reporting function compatible with AML

Interface to use the new MTG implementation with the old AMAPmod interface.


	
openalea.mtg.aml.Activate(g)

	Activate a MTG already loaded into memory

All the functions of the MTG module use an implicit MTG argument
which is defined as the active MTG.

This function activates a MTG already loaded into memory which thus becomes
the implicit argument of all functions of module MTG.


	Usage:

	




>>> Activate(g)






	Parameters:

	
	g: MTG to be activated






	Details:

	When several MTGs are loaded into memory, only one is active at a time.
By default, the active MTG is the last MTG loaded using function MTG().

However, it is possib